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Abstract  
 
The Rock Observation Calculator (ROC) is a software program developed by the United States 
Army Corps of Engineers (USACE) Engineering Research and Development Center (ERDC), 
designed to provide an estimate of the gradation of sediment samples based on field photographs. 
Collecting physical sediment samples in the field to be analyzed in the laboratory can be a 
cumbersome process. This tool provides a more efficient means of estimating sample gradations 
without requiring intensive sample collection and analysis.  ROC applies computer-based image 
analysis routines to segment the image pixels into individual particles. ROC then uses the 
identified particles to estimate a gradation.  To evaluate this tool, gravel bars throughout Kansas 
and Missouri were photographed and analyzed with ROC.  The gravel bars were also assessed 
using pebble counts and/or sieve analysis of bulk samples. This analysis assesses the merits and 
limitations of using the ROC tool on gravel bars.   
 
 

 

Introduction  
 

Collecting sediment size data in the field is necessary for a wide range of purposes, including 
substrate suitability for fish spawning (Kondolf, 1997) and geomorphic analysis. For large 
sediment sizes, it can be difficult or impractical to collect bulk samples that can be run through a 
standard sieve test for sediment gradation. Therefore, several methods have been developed for 
estimating grain size distribution. The most commonly used of these methods is the Wolman 
Pebble Count (Wolman, 1954). This process involves randomly selecting approximately 100 
sediment particles in a given location and measuring the intermediate axis length. The 
intermediate axes are then ranked from smallest to largest and used to create a cumulative 
gradation plot. This process can take a long time to perform and therefore limits the amount of 
data available. The pebble count is also reportedly biased towards large particles (Leopold, 1970) 
and has large operator bias (Daniels and McCusker, 2010). Therefore, semi-automated means to 
obtain sediment gradations are desirable. The Rock Observation Calculator (ROC) is a 
photograph-based software program developed by the United States Army Corps of Engineers 
(USACE) Engineering Research and Development Center (ERDC) that identifies sediment 
particles in a given image and calculates an estimated gradation. This study evaluates the ROC 
tool by using it on images collected at several gravel bars throughout Kansas and Missouri and 
comparing the results to pebble counts and bulk samples. Because the ROC tool is a photograph-



based tool, the tool approximates a pebble count, which estimates the surface gradation of the 
river bed. However, in many cases, pebble counts themselves are only approximations for 
sediment size gradation that would be best assessed with a sieve analysis of a bulk sample. While 
surface armoring can cause the subsurface and the surface gradations to differ, the sites selected 
in the present analysis did not show substantial differences between the surface and the 
subsurface layer. Therefore, bulk samples are included in the present analysis, but it should be 
understood that the ROC output is most comparable to pebble counts because only the surface 
layer is being measured.  
 
The automated ROC tool is a geometrical image analysis technique that applies digital image 
segmentation techniques (e.g. local and watershed thresholding) to identify and separate particles 
within an image into discrete objects and then estimates the size of objects or grains individually. 
Other popular techniques used for grain size analysis from photographs are to apply statistical 
analysis methods and, more recently, machine and deep learning. Statistical analysis methods 
determine grain size from a measurement of image texture. Some common statistical approaches 
to quantify image texture include auto-correlation (Rubin, 2004; Warrick et la., 2009), semi 
variance (Charbonneau et al., 2004; 2005), fractals (Buscombe and Masselink, 2009), and 
spectral analysis (Buscombe, 2013).  Grain size analysis based on machine and deep learning is 
becoming increasingly popular and involves training computer models to identify and separate 
sediment grains in an image (Huang et al., 2022; Buscombe, 2020; Soloy et al,. 2020).  Machine 
and deep learning approaches require high quality training data sets, which are often comprised 
of hundreds to thousands of images in which individual particles are manually segmented and 
labeled (Huang et al., 2022). These algorithms are quite useful and can perform automatic and 
unsupervised segmentation of images, but they are often restricted to materials similar to those 
used in the training set (Huang et al., 2022; Buscombe, 2020; Soloy et al., 2020). Similarly, 
statistical approaches also require calibration, restricting their versatility. For both, more diverse 
and more extensive training sets improve the results; however, training these models is quite 
computationally and labor intensive. Though geometrical analysis (like ROC) is limited by image 
quality and requires user interaction, it is computationally less expensive and more versatile 
(Graham et al., 2005; McFall et al., 2020). 
 
 

Data 
 

Table 1 lists the data used for this analysis. Samples were collected in 2021 and 2022. In total, 5 
pebble counts were collected and 5 bulk samples were collected. Two of the samples (Crider Creek 
and Rock Creek) contained both bulk data and pebble count data.  Bulk samples were collected in 
jars and then sieved by mass in the laboratory.  Pebble counts were collected as a modification to 
the Wolman pebble count. The Wolman pebble count requires the operator to sample 100 
sediment particles from the river bed within a geomorphic feature. Wolman recommends creating 
transects and sampling at random from the transects until 100 particles have been measured. 
Other researchers have claimed that smaller sample sizes are sufficient, such as 60 stones (Brush, 
1961) or 70 stones (Mosely and Tinsdale, 1985). For the present analysis, the operator identified 
an area of approximately 1 m2 and randomly selected sediment particles within the study area. 
The intermediate axis of the selected particle was measured and then placed back in the study 
area, which allowed for the particle to be sampled again at random. The number of particles 
measured varied by site, between 35 and 75 particles. Because the variation of particle sizes in a 1 
m2 area is likely to be less than the variation within a geomorphic feature (as envisioned by 



Wolman), this was a reasonable adaptation of the method. However, the uncertainty due to the 
number of samples was not quantified.  

Table 1: Summary of data collected 

River Location Total 
Samples 

Pebble 
Counts 

Bulk 
Samples 

Pebble Count 
and Bulk 
Samples 

Crider Creek Ozarks, MO 4 1 1 1 
Jake Creek Ozarks, MO 1  1  
Rock Creek Kansas City, MO 3 1  1 
Little Maries Ozarks, MO 1 1   
Maries Ozarks, MO 1  1  

 

 

Methods 
 

A semi-automated image analysis routine, ROC, was developed to identify and measure sediment 
grain size from field photographs. ROC applies digital image processing techniques to identify 
and separate rocks/pebbles within an image into discrete objects and then estimates the size of 
each object or grain. The routine employs algorithms from the MATLAB Image Processing 
Toolbox. The algorithm consists of three main parts: (1) preprocessing (e.g., load in image, define 
image scale, select region to process), (2) image segmentation via thresholding to identify grains, 
and (3) calculation of cumulative size distributions. (2) and (3) are described in more detail in the 
following sections.  

Prior to analysis, photographs must be obtained in the field in such a way that the assumptions 
used in the ROC algorithm are valid. Photographs must be taken with a linear reference within 
frame, such as a ruler or a yardstick. This linear reference should be on the side of the photograph 
and should be parallel to the natural slope of the grains to be analyzed. The photograph should be 
orthogonal to the linear reference, which will project the photograph into an (x,y) grid.  

 

Description of ROC Segmentation Process 
Typically, photos are collected as colored or red-green-blue images in which each pixel has a value 
describing the red, green, and blue component. The aim of image processing is to generate a 
binary image in which pixels are characterized with just two intensity values, 0 to denote 
background and 1 to indicate foreground (e.g. part of the particle/rock/pebble). Images are first 
converted to an 8-bit integer grayscale image in which each pixel is assigned a single value from 
0 to 255. This value describes pixel brightness or intensity, where 0 corresponds to black and 255 
to white. The image is then converted to a binary image using a segmentation technique called 
thresholding. Thresholding differentiates particles from the background based on the grayscale 
pixel intensity relative to a defined intensity threshold (Gonzalez et al. 2004).  

Specifically, ROC utilizes local thresholding (LT), in which segmentation is done by applying a 
locally varying threshold in which pixels are classified as background or foreground based on the 
mean brightness of nearby pixels  (Gonzalez et al. 2004). LT can be computationally expensive 
and requires some user input to guide processing; however, it tends to do well in cases with 
uneven background illumination (Gonzalez et al. 2004), which is characteristic in photos taken 
outdoors.  



To deal with particle overlap and separate touching grains, the binary image is further refined 
using watershed segmentation. (Gonzalez et al. 2004; Graham et al. 2005; Kornilov and Safornov 
2018). Consider the image of rocks as a topographic image of a group of watersheds, in which the 
centers are basins and edges are ridges. First, a complement of the binary image is determined. 
In the complement of a binary image, zeros become ones and ones become zeros.  Then a distance 
transform algorithm is applied that determines the distance from every pixel to the nearest 
nonzero-valued pixel. This information is used to estimate the center of the rock (or basin) 
and ridges, assuming the center would be the farthest away from non-zero values. Like LT, 
application of watershed segmentation also requires user interaction. If an image is over 
segmented, users can define a separation value. A lower value enhances separation and a higher 
value decreases separation. The ROC interactive GUI makes it simple for users to easily apply 
both LT and watershed segmentation, varying parameters if needed until optimal results are 
reached. See Figure 1 for the ROC interface.   

 
Figure 1: ROC GUI. Segmentation parameters can be found in the bottom left of the above image, including 
sensitivity, separations, shape filter, and minimum pixels. These parameters are varied by the user until the 

segmentation most closely matches the image. The resulting segmentation can be found in the top left image, while 
the gradation results can be found on the right side of the image.  

 
Description of ROC Gradation Calculations 
Following segmentation, the ROC tool calculates gradation using the surface area of each 
identified rock. Surface area is calculated by summing up the number of image pixels that make 
up each rock. From the 2D images, the major and intermediate axes of each rock can be measured. 
Previous work has found that particles tend to settle such that the smallest or minor axis is more 
or less vertical (Gokelma et al., 2020; Kim et al., 2018; Komar and Reimers, 1978; McNown and 
Malaika, 1950), so the axes visible in the 2D image are assumed to be the major and intermediate 
axes.  Note that the major and intermediate axes need not be oriented in any particular 
orientation, as long as these two axes are visible to the camera. ROC then organizes the identified 
particles into defined bins based on each particle’s intermediate axis. Bins are ¼ phi steps from 
0.0002 mm (12 phi) to 4096 mm (-12 phi). The area in each bin is summed and the cumulative 



area is determined from smallest to largest. The cumulative area in each bin is then divided by the 
total area to produce a gradation curve in terms of percent finer. Finally, statistical percentiles, 
d10, d50, and d90, etc. where that dx represents the size in which percent of identified pebbles/rocks 
is finer than, are determined through linear interpolation of the cumulative distribution to the 
desired value.    
 
Description of other Gradation Methods 
Leopold (1970) claimed that pebble counts are biased towards large sizes due to the fact that larger 
rocks encompass larger areas and therefore have a higher likelihood of being selected by the 
operator. While a bias towards larger sizes does exist, the reason is based on operator bias 
(described in the next section) rather than rock size.  Rocks with larger surface areas are more 
likely to be picked, but this corrects for bias rather than introducing it.  Given that enough pebbles 
are counted to reduce random chance, this method produces a fairly accurate result.  
 
Several authors have made this observation, including Kellerhalls and Bray (1971). In their paper, 
they describe a voidless cube with 3 sets of smaller cubes making up the voidless cube (see Figure 
2). In this example, the surface gradation and the subsurface gradation are equivalent.  

 
Figure 2: Voidless Cube from Kellerhals and Bray (1971) 

For the ROC tool to accurately characterize the gradation of the cube, the gradation calculated 
by ROC should be equivalent to the gradation obtained through a bulk sieve analysis (assuming 
that the surface and subsurface gradations are equivalent). The possible histograms from the 
various sampling techniques can be seen in Figure 3. The bulk sieve analysis (the true gradation) 
would result in the histogram shown in (a). Two possible (but incorrect) ways for ROC to match 
the histogram shown in (a) are area-by-weight and area-by-number. In area-by-weight, the 
cubes visible on the surface would be converted to weight and then plotted as percent by weight 
(c). This produces an overly coarse distribution because the control volume is no longer 
maintained. Area-by-number may appear to be similar to a pebble count because the pebbles are 
ranked from largest to smallest and a frequency plot developed, but this produces an overly fine 
distribution. Only the grid-by-number (b) produces the correct distribution because the 
probability of selecting a pebble in a pebble count is proportional to its surface area.  For a 
photograph-based tool to correctly yield an equivalent gradation to a pebble count or a bulk 
sieve analysis (assuming that the surface and subsurface gradations are equivalent), it must 



compute the gradation based on the relative proportion of surface area occupied by each grain 
class. 

 

 
Figure 3: Histogram Distributions from various sampling and frequency methods (Kellerhals and Bray, 1971)  

 
 
Description of Operator Bias 
Pebble counts have been shown to have large operator bias (Daniels and McCusker, 2010). It is 
theorized that the pebble count is biased toward large particles due to operator bias because when 
the operator’s finger lands on multiple rocks, the operator is subconsciously drawn to pick up the 
larger particle. The ROC tool eliminates this bias.  
 
To test operator bias in the ROC tool, 5 individuals were asked to perform a ROC analysis on 5 
pictures. The results were then aggregated to determine the total range of results obtained by 
different operators. Operator bias may be introduced into the ROC tool because ROC requires 
user interaction to determine the segmentation parameters, which change based on the 
photograph being analyzed.  
 

Results 
 

Percent Finer Plots 
The gradation plots obtained from the ROC tool and the pebble counts/bulk samples can be seen 
in Figure 4-Figure 11. These plots show good correlation between the ROC tool and the measured 
data. In Figure 4, the bulk sample is much finer than both the ROC tool and pebble count at the 
d10. Figure 5 shows that the bulk data is coarser than the pebble count and the ROC tool at the d10. 
Both of these phenomena can be explained by differences between the subsurface gradation 
(which was included in the bulk samples) and the surface gradation observable by the ROC tool 
and the pebble count.  



 
Figure 4: ROC compared to the Pebble Count and Bulk 

Sample collected on Rock Creek in Kansas City, MO 

 
Figure 5: ROC compared to the Pebble Count and Bulk 

Sample collected on Crider Creek in the Ozarks, MO 

 
Figure 6: ROC compared to the Pebble Count and Bulk 

Sample collected on the Little Maries River in the 
Ozarks, MO 

 

Figure 7: ROC compared to the Bulk Sample 
collected on Jake Creek, Ozarks, MO 

 

 

Figure 8: ROC compared to the Pebble Count collected 
on Crider Creek, Ozarks, MO 

 

 

Figure 9: ROC compared to the Bulk Sample collected 
on Crider Creek, Ozarks, MO 
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Figure 10: ROC compared to the Bulk Sample 
collected on the Maries River, Ozarks, MO 

 

 

Figure 11: ROC compared to the Pebble Count 
collected on Rock Creek, Kansas City, MO 

 

 
 

Average Results  
The average percent difference between the ROC tool and the measured data can be seen in Figure 
12 and Figure 13.  The percent difference between the ROC tool and the bulk data (Figure 12) 
shows that the ROC tool was generally able to predict the gradation within 20% of the bulk data.  
At Rock Creek, ROC overpredicted the d10 by 234%. However, the pebble count at this site was 
only 11% coarser than the ROC tool. This could be due to either the inability of the ROC tool to 
identify finer material or the subsurface gradation was finer than the surface gradation.  
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Figure 12: Percent Difference between ROC tool and Bulk Samples (gradations by mass obtained from sieve 
analysis). The largest percent difference between ROC and the bulk samples was 234% for the d10, though this sample 

also had a 201% error between the bulk sample and a Wolman Pebble Count. Most of the samples contained 
less than 20% percent difference 
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Figure 13: Percent Difference between ROC and Pebble Counts. Crider Creek C2 showed the largest discrepancies 

between ROC and the pebble counts, with a d10 of 127% and a d30 of 113%. Most of the samples were within 20% 
difference. 

 
Table 2 below shows the average percent difference between the ROC tool and the measured data. 
The d10 shows the largest percent difference between ROC and the measured data, though this is 
skewed by the bulk dataset at Rock Creek and the pebble count at Crider Creek. It would be 
expected for the smallest particles (d10) to have the largest error, since image analysis tools are 
often biased towards large particles (Fall et al, 2020; Smith and Friedrichs, 2011).  
 
 

Table 2: Average Percent Difference between the ROC tool and the bulk samples and pebble counts. The largest 
percent difference occurred at the d10, though these were each skewed by one sample.  

 

Average Percent Difference Bulk 
Samples 

Average Percent Difference Pebble 
Counts 

d10 48% 36% 

d30 -12% 29% 

d50 -16% 12% 

d60 -14% 13% 

d90 6% 6% 
 
Operator Bias 
The results of the operator bias analysis can be seen in Figure 14 and Table 3 below. Figure 14 
shows the percent error between the ROC analysis obtained by each individual user and the “true” 
value obtained by a pebble count. These values are grouped by percent finer (d10, d30, d50, d60, and 
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d90) and each percent finer class contains 25 points (5 photos analyzed by 5 operators). These 
results indicate that there is more variability at smaller grain classes than at larger grain classes. 
The summary statistics presented in Table 3 indicate that although there is larger variability at 
smaller grain classes, the arithmetic mean and median are small, indicating good correlation 
between the aggregated ROC analyses and the pebble counts.  

 

Figure 14: Percent error between ROC tool and gradation obtained through pebble counts. This figure indicates that 
the spread of the percent error decreases at larger grain sizes.  

 
 
Table 3: Statistics Regarding Operator Bias. The arithmetic mean and median of the percent errors are very close for 
d30-d90, while the d10 was within 17% error. The standard deviation decreased as the grain sizes increased, indicating 

the ROC tool is more accurate with larger grains. Because the arithmetic mean and median contain less than 15% 
error, the ROC tool can be assumed to contain less than 15% error when enough participants use the tool. The 

standard deviation does indicate that any individual ROC analysis may contain relatively large error, though this 
error still is within + 1 grain class.  

 Mean Median Std. Dev. 

d10 2% -15% 55% 

d30 11% -11% 56% 

d50 3% -5% 25% 

d60 2% -2% 26% 

d90 0% 2% 18% 
 

 

 

 

 



Discussion 
 

The results reported in Table 2 show that the ROC tool can accurately calculate the grain size 
distribution within approximately 20%. To understand the amount of error this introduces for 
geomorphic processes, the d10, d30, d50, d60, and d90 for both the ROC results and the measured 
results were classified into standard grain classes used in sediment modeling. The true values 
(pebble counts and bulk samples) were then compared to the ROC values to determine the error 
that may have been introduced by the ROC tool when using the estimated values in sediment 
modeling. These values can be seen in Table 4 and Table 5. These results show that the ROC tool 
accurately classified the grain class at least 60% of the time and was within plus or minus 1 grain 
class 100% of the time.  

 

Table 4: Accuracy of ROC in predicting the grain class for pebble  counts. Of the 5 samples with both a pebble count 
and a ROC analysis, all of the ROC predictions are within 1 grain class of the pebble count. The predictions appear to 

be more accurate for the d30-d60 sizes.  

 
Total Number 

of Samples 

Samples within the 
same grain class as 

pebble count 

Samples within + 1 
grain class of 
pebble count 

d10 5 3 2 
d30 5 4 1 
d50 5 5 0 
d60 5 4 1 

d90 5 3 2 
 

 

Table 5: Accuracy of ROC in predicting the grain class for bulk sieve samples. Of the 5 samples with both a bulk 
sample and a ROC analysis, all of the ROC predictions are within 1 grain class of the bulk sieve samples.  

 
Total Number 

of Samples 

Samples within the 
same grain class as 

bulk sample 

Samples within + 1 
grain class as bulk 

sample 

d10 5 3 2 
d30 5 3 2 
d50 5 4 1 
d60 5 3 2 

d90 5 4 1 
 

 

 

 

 

 



Conclusions  
 

Leopold (1970) claimed that pebble counts are biased towards large sizes due to the fact that larger 
rocks encompass larger areas and therefore have a higher likelihood of being selected by the 
operator.  We refute this claim; it is precisely because larger particles are selected more frequently 
that a pebble count method can yield equivalent results to a by-mass measurement of a bulk 
sample.  The ROC tool calculates percent finer by surface area, which provides the correct 
weighting to differently-sized particles which is equivalent to the probability of a given grain size 
being selected during a pebble count. 

The purpose of this paper was to document the strengths and weakness of the Rock Observation 
Calculator (ROC) for estimating the size gradation of gravel bars. This analysis confirms that the 
ROC tool can estimate the size gradation of gravel bars with practical levels of accuracy, provided 
the surface sizes represent the full sample gradation and the specific gravity does not vary 
amongst particles.  Compared to five pebble count and five bulk samples, the ROC tool was able 
to select the correct grain size class for the d10, d30, d50, d60, and d90 statistics in 60% of the cases.  
The other 40% were within one grain size class.  
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