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Abstract 

 

Turbidity is a vital metric of water quality that has adverse effects on aquatic life. Turbidity can 
promote pathogen growth, carry harmful contaminants, and severely impact the taste and odor 
of drinking water. Up to 40% of New York City’s (NYC) unfiltered drinking water supply is from 
the Ashokan Reservoir in the southeastern Catskill Mountains, which is prone to excess 
turbidity levels originating from stream erosion into glacial legacy sediment. The U.S. Geological 
Survey has 29 high-frequency turbidity monitoring stations on 12 streams in the 497 km2 
catchment tracking the spatial and temporal production of turbid streamflow. To manage 
drinking water operations more effectively, the NYC Department of Environmental Protection 
would benefit from up to a seven-day prediction of river turbidity levels. Currently, traditional 
regression models face challenges in producing such estimates. Newer computational tools, 
from the rapidly growing field of Machine Learning (ML), hold great potential for forecasting 
daily turbidity data. For example, Recurrent Neural Networks (RNNs) have proved valuable in 
learning  patterns in daily streamflow time series for prediction. A sub-category of RNNs, Long 
Short-Term Memory (LSTM) models, have shown competence in forecasting turbidity. Another 
type of ML model, called a Gated Recursive Unit (GRU), suggests faster computational speeds 
over LSTMs in various domains; however, GRUs have not been commonly applied to 
hydrological data series to date. We aimed to explore the application of ML algorithms to predict 
turbidity for the Stony Clove watershed in the Ashokan Reservoir catchment and compare the 
performance of RNN, GRU, and LSTM to one another. We leveraged time series data from 
several strategically distributed sensor stations for our analysis; furthermore, we employed 
discharge and meteorological inputs (e.g., precipitation, soil moisture, soil temperature from NY 
Mesonet) as input features to forecast daily turbidity. We hypothesized that LSTMs would 
perform better than GRUs and RNNs for forecasting turbidity. Our results found that LSTMs 
had the best overall performance (all 3-error metrics) for every sensor. RMSE values ranged 
from 5-18 for the algorithms with only 1 sensor having a slightly lower GRU RMSE value 
compared to the LSTM. Overall, we observed that LSTMs had the best performance while GRUs 
had the fastest computation time. 
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Introduction 

 

Turbidity in surface water is a strong indicator of the presence of high levels of bacteria, 
pathogens, and particles, which may shield harmful organisms from disinfection processes. 
Thus, consuming highly turbid water containing harmful bacteria may cause minor to severe 
health-related issues such as nausea, cramps, headaches, and more (Mukundan et al., 2013). 
Aside from being an indicator of potential health impacts, turbidity affects the taste and odor of 
the water itself and can impact proper functioning of household appliances or industrial 
operations when affected surface water is used as a potable water source (Iglesias et al., 2014).  
Operators of drinking water reservoirs would therefore benefit from forecasts of turbidity to 
manage reservoir operations more optimally. 

The Catskill and Delaware river systems form one of the largest unfiltered surface water supply 
systems in the world supplying potable water to New York City (Wang et al., 2021). Up to 40% of 
New York City’s (NYC) unfiltered drinking water supply is from the Ashokan Reservoir in the 
southeastern Catskill Mountains, which is prone to excess turbidity levels (Mukundan et al 
2013; McHale and Siemion, 2014). Suspended sediment has been attributed as a major source of 
turbidity that ends up in the reservoir, originating from stream erosion into glacial legacy 
sediment (Mukundan et al., 2013; Wang et al., 2021).  The U.S. Geological Survey has 29 high-
frequency turbidity monitoring stations on 12 streams in the 497 km2 catchment tracking the 
spatial and temporal production of turbid streamflow. To manage drinking water operations 
more effectively, the NYC Department of Environmental Protection would benefit from up to a 
seven-day prediction of river turbidity levels for optimal management of this drinking water 
reservoir. Turbidity is strongly correlated to discharge, which itself is correlated to 
meteorological variables such as precipitation amount, intensity, as well as catchment attributes 
such as soil moisture and temperature. These correlations suggest the potential to predict 
turbidity into the future to support reservoir operations.  
 
Traditional turbidity prediction methods, such as regression models, have been shown to 
outperform other methods in terms of accuracy (Wang et al., 2021; Meyers et al., 2017). 
However, these methods can be limited by the complex nature of river systems, including 
memory effects and feedbacks (Iglesias et al., 2014), and may not capture the nonlinear 
dynamics of the system. A recent study demonstrated that time-variant models outperformed 
static regression models in terms of log-NSE and mean bias across lead times (Wang et al., 
2021), while catchment management practices can significantly influence the relationship 
between turbidity and discharge, leading to significant scatter about a linear relationship 
(Iglesias et al., 2014). Other traditional methods include probabilistic forecasting and advanced 
prediction using machine learning techniques such as Hammerstein-Wiener and neural 
networks (Gaya et al., 2017). However, these methods can be limited by their difficulty in 
capturing complex relationships and high variability of turbidity levels (Shi et al., 2022). On the 
other hand, Recurrent Neural Network (RNN) models, such as Gated Recurrent Units (GRUs) 
and Long Short-Term Memory (LSTM) models, have shown better performance in time series 
forecasting and have the potential to improve turbidity prediction in reservoir management (Shi 
et al., 2022). 



 

Our objective is to build predictive models that will allow the NYC water management group to 
forecast future (ideally a  week or longer) turbidity levels based on limited, and easily available, 
discharge and meteorological input variables. We chose to build and compare the performance 
of an RNN, GRU, and LSTM on 5 out of the 6 primary sensors in the Stony Clove sub-basin (6th 
sensor lacked various variables). Overall, the purpose of this research is to predict turbidity 
ahead to support reservoir management.  

 

Methods 

 

Study Area and Data 

The upper Esopus Creek drains to the Ashokan Reservoir located in the Catskill Mountains of 
New York. The mountainous stream is a high energy system prone to episodes of elevated 
turbidity originating from stream erosion into glacial legacy sediment during flooding events 
(Mukundan et al., 2013; Wang et al., 2021). This work focuses on the Stony Clove tributary 
catchment (84.2 km2) of the Upper Esopus Creek watershed (Figure 1), which connects to the 
Ashokan Reservoir (the second largest reservoir by volume, 466 million m3) via the Esopus 
Creek. The Stony Clove sub-basin is monitored by 6 primary sensors and 14 secondary data 
sensors measuring discharge and various water quality parameters. We focus on this Stony 
Clove study area initially to develop and evaluate performance of predictive models in this most 
densely-sensored sub catchment, with a future plan to transfer our learnings to the larger 
Esopus Creek watershed and inflows to the Ashokan Reservoir. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1. Displays a map of the Stony Clove catchment along with labeled primary sensors (red dots) and 

secondary sensors (green dots). Source – Created by Dany Davis  



 

 

 

 

 

 

 

 

 

 

 

 

 

This study utilized data from two sources: 1) USGS and 2) NY Mesonet (Brotzge et al., 2021) 
Daily time interval USGS open-source data were downloaded from their website for each of the 
sensors listed in Table 1. Similarly, meteorological data (e.g., precipitation, soil moisture, soil 
temperature) were retrieved from the NY Mesonet website via a data download request. Since 
the frequency of the USGS data were observed in daily increments, the Mesonet data were 
cleaned and down sampled from 5-minute increments to daily mean frequencies to match the 
USGS timestamps. The widely used interpolation method in python's pandas library was used to 
impute all missing data (Lepot et al., 2017). Since outliers were rare (< 8 – 10 in the entire 
dataset) , they were not removed in order to analyze occasional high peaks to uncover plausible 
trends. We examined correlation coefficients (R) for the feature variables associated with our 
target variable (Turbidity) and selected the 6 feature variables (Turbidity, Discharge, Suspended 
Sediment Concentration (SSC), Sediment Suspended Load (SSL), Precipitation local, and 
Precipitation incremental) with values of R > 0.5 as our input variables; we then plotted these 6 
timeseries to gain visual insight into correlating trends.  We trained 3 individual models (RNN, 
GRU, and LSTM) on data from each of the 5  primary sites (Table 1). Each model was trained on 
data solely from 1 site/sensor; thus, we have 3 models for each sensor.  

 

Algorithms  

To forecast turbidity, we compared three algorithms in terms of increasing structural 
complexity: namely RNN, GRU, and LSTM (Figure 2).  RNNs, which have a simple architecture 
compared to GRU and LSTM, also have limited memory retention and are not ideal for 
modeling long-term dependencies (Hussain et al., 2018). GRU and LSTM are more complex 
variants of RNNs that include gating mechanisms. GRUs have two gates, a reset gate that 
controls how much of the past information to forget, and an update gate that decides how much 
of the new information to retain. LSTMs have three gates, an input gate that controls how much 
of the new information to store, a forget gate that controls how much of the past information to 
forget, and an output gate that controls how much of the cell's memory to reveal as output.  
 
An RNN is capable of modeling a collection of sequential data by recognizing and learning 
patterns based on previously seen iterations of data. They work particularly well with time series 

Gage Number 
(sensor) 

Stream 
Gage Elevation 

(ft Above 
NAVD) 

Upstream 
Drainage Area 

(mi ²) 

01362370 
Stony Clove 

Creek 
947.52 30.9 

01362368 Ox Clove Creek 1020 3.83 

01362357 Warner Creek 1119.95 8.71 

01362336 
Stony Clove 

Creek 
1280 9.25 

01362322 
Stony Clove 

Creek 
1530 1.81 

Table 1. Offers insight into USGS sensors and the type of parameters they observe.     

 

 



 

data since they maintain internal memory that re-circulates activations along with input data as 
the model iterates through the dataset. Yet, RNNs have limited memory retention and do not 
model long-term dependencies well because of exploding or vanishing gradients (Hussain et al., 
2018). Essentially, RNNs can only remember information for a short time with some only 
looking at the sliding window length to make future predictions. GRU and LSTM were created to 
address the shortcomings of RNNs; therefore, we decided to compare the performance of all 
three algorithms. Not only do GRU and LSTM models alleviate the short-term memory issues 
(alleviate vanishing gradients) of their predecessor, but they also provide a wider array of 
learnable weights/parameters (e.g., learning rates, input bias, output bias) to optimize model 
performance (Shi et al., 2022). Additionally, the improved physical architecture of GRU and 
LSTM models allows better control of the input flows, and therefore, more control over the 
outputs. In terms of model hierarchy, GRUs have a less complex model architecture compared 
to LSTMs that enable them to perform computationally faster (Sadon et al., 2021). Yet the more 
intricate infrastructure of the LSTMs theoretically makes them perform better on larger datasets 
compared to GRUs (Pirani et al., 2022).  
 
The bottom half of Figure 2 shows the concept of a sliding window to highlight the length of 
prior time steps used to predict a specified number of future time steps. Due to time constraints 
on training models, our algorithms currently take in 4 days of daily data and forecast turbidity 
values for one day into the future. Our initial attempts to train models using 15-minute data 
were time consuming, so we opted to use daily data instead to ensure timely results. We 
acknowledge that this approach may not be suitable for real-time applications that require more 
frequent updates, but it allowed us to compare the performance of the algorithms using 
consistent training data and hyperparameters. In future work, we plan to explore the use of 
more granular data and real-time applications to address this limitation. All models were 
designed using ML libraries like Scikit-learn and TensorFlow. We used three error metrics to 
compare the model performance: Mean Absolute Error (MAE), Mean Absolute Percent Error 
(MAPE), and Root Mean Squared Error (RMSE). To facilitate comparison across algorithms, we 
used consistent hyperparameters to train all three models – RNN, GRU, and LSTM (Table 2).  
 

 

Figure 2. Shows algorithm structural complexity (RNN being simplest, GRU in the middle, and LSTM 

being the most complex). Bottom schematic spotlights the concept of sliding window in time series. 

Source – 1) http://dprogrammer.org/rnn-lstm-gru, 2) https://machinelearningmastery.com/lstm-model-

architecture-for-rare-event-time-series-forecasting/ 

  



 

 

 

Results & Discussion 

 

Our 6 selected input features for each algorithm are summarized below (Table 3).   

Feature Observation Frequency Data Source 

Discharge Daily USGS 

Turbidity Daily USGS 

Estimated SSC Daily USGS 

Computed SSL Daily USGS 

Precipitation Local Daily NY Mesonet 

Precipitation Incremental Daily NY Mesonet 

 

LSTMs mostly dominated the best performance among the three algorithms (Table 4), while the 
GRUs proved to be the computationally fastest. According to Chung et al. (2014), GRUs are 
typically faster than LSTMs due to having a smaller number of parameters and internal states, 
which leads to reduced computational requirements during training and testing. LSTMs tended 
to have the lowest error values (best fit between forecasted values and actual values) across all 3 
performance metrics columns for each of the 5 sensors. In two cases, the GRU seems to have a 
slightly lower error value compared to the LSTM but that only happens in one performance 
metrics column.  The complex architecture of the LSTM allows it to remember significant 
patterns and events in time series datasets well. This translates to good performance since the 
algorithm is able to dissect recurring trends and recall significant prior occurrences to better 
forecast values for the target variable (turbidity). GRUs also serve as ideal candidates for small 
datasets since they yield relatively comparable performance to LSTMs while being significantly 
faster (Chung et al., 2014).  Sensors 68 and 22 have extremely close LSTM and GRU error 
values, but the GRU would have to have lower values across all three metrics columns to stand 
as a contender for best performance. Due to its rudimentary infrastructure, RNNs performed 
the worst for every sensor compared to its improved counterparts.  

Although each of the three algorithms in this study had extremely narrow differences in their 
error metrics due to the small size of the dataset (only 1214 rows), the LSTMs performed the 

Batch 
Size 

Window 
Length 

Epochs 
Learning 

Rate 
Activation 

Loss 
Function 

Optimizer Layers Units 
Train/Test 

split 

8 4 50 0.5 LeakyReLU MAE Adam 
3 Algo + 
1 Dense 

64 80/20 

Table 3. Represents final input features, their observation frequency, and their data source. 

Note – Suspended Sediment Concentration (SSC) and Suspended Sediment Load (SSL) 

 

Table 2. Represents final input features, their observation frequency, and their data source. 

Note - Algorithms were all trained on the same parameters. 

 



 

best overall, likely due to their complex architecture allowing them to learn more complex 
functions within this short-term window of data (Shi et al., 2022). The memory benefits of the 
LSTM may not be fully realized with such a short sequence, but they were still more highly 
parameterized than the other models. However, this study's findings are limited by the small 
dataset, and further research may reveal different outcomes with larger datasets (Chung et al., 
2014). We hypothesize that a larger dataset would increase the performance gap between the 
LSTMs and the other two algorithms (GRU and RNN). 

While the LSTM performs the best quantitively based on Table 4, we can re-affirm its superior 
performance by comparing the time series forecasts in Figures 3, 4, and 5, for the outlet sensor 
of the Stony Clove catchment (01362370). Comparing these plots, we see that Figure 5 (LSTM) 
has the least difference between its actual turbidity (in blue) and predicted turbidity (orange) 
indicating the best fit. In other words, we can visually tell that the LSTM model for sensor 70 in 
Figure 5 would have the lowest error metrics since most of the error metrics are based on 
differences in actual vs predicted values. Therefore, the lower the gap/distance between the 
actual and predicted turbidity lines in the time series plots (Figure 3, 4, and 5), the lower the 
hypothetical error values for the respective plots.  The RNN plot (Figure 3) shows the most 
variation/noise in its predicted turbidity line due to its inability to remember distant past events 
to scale forecasted values accordingly.  We can clearly see the GRU (Figure 4) shows forecasted 
turbidity peaks (orange line) closest to the actual turbidity peaks (blue line) compared to the 
other two models. This makes sense because GRUs ideally yield relatively equal performance to 
LSTMs on small datasets while being more computationally efficient.  The LSTM plot (Figure 5) 
may not hit the highest magnitude for its predicted turbidity peaks but has a better fit between 
predicted turbidity line and the actual turbidity; thus, explaining its best performance results in 
Table 4 (sensor 70). Due to the early stopping conditions established in training the models, all 
our algorithms yielded results with < 20 epochs of training, which boosted our computation 
times across the board. 

Time Series Model Forecast Plots (Sensor 70) – Daily Data 

 

Figure 3. Displays the Actual Turbidity Vs. Forecasted Turbidity plot for the RNN model.  



 

 

 

 

 

 

Figure 4. Displays the Actual Turbidity Vs. Forecasted Turbidity plot for the GRU model.  

Figure 5. Displays the Actual Turbidity Vs. Forecasted Turbidity plot for the LSTM model.  



 

 

 

 

Sensor Algorithm 

Daily Data Performance Metrics 

MAE MAPE RMSE 

01362370 

LSTM 5.592 0.3977 17.98 

GRU 6.991 0.6749 18.44 

RNN 9.595 1.322 19.03 

01362368 

LSTM 3.317 0.3349 8.239 

GRU 3.336 0.3372 8.180 

RNN 3.659 0.3838 8.346 

01362357 

LSTM 5.856 0.5483 13.71 

GRU 7.068 0.6279 14.47 

RNN 7.140 0.6430 14.09 

01362336 

LSTM 2.230 0.2624 6.394 

GRU 3.226 0.4095 6.998 

RNN 3.736 0.5450 7.099 

01362322 

LSTM 0.9503 0.4393 5.016 

GRU 0.9930 0.3913 5.051 

RNN 1.357 0.8625 5.110 

Table 4. Summarizes algorithm results for each the 5 primary sensor data utilized in this study. 

Note – Bold numbers shows best performance for each error metrics (column) per sensor (row) 

Note  

 



 

Conclusion & Future Work 

 

Our observed results were in accordance with our initial hypothesis of LSTMs performing better 
than GRUs and RNNs while yielding similar performance metrics. GRU gives comparable 
performance to LSTMs on small datasets, which is the case for our current daily-frequency data 
set, but we expect its performance would decline as we consider higher-frequency data (e.g., 15-
minute). The RNN models’ performance for every sensor is the poorest compared to its polished 
counterparts. This can be attributed to the short-term memory issue, vanishing gradients, and 
inability to ignore noisy/irrelevant data while making its predictions. 

Despite the promising predictions thus far, we have numerous improvements and ideas for 

future work. For example, even though our LSTMs outclassed our RNNs and GRUs for every 

sensor, we would like to increase the future forecasting horizon to gain more meaningful and 

realistic outputs from these models. Currently, our goal is to forecast up to 7 days to help NYC 

DEP optimize reservoir operations if anticipated turbidity levels may spike for any reason such 

as an upcoming storm event. Future work will also explore algorithms with an alternate and 

potentially better architecture for addressing complex systems with memory, namely Bi-

directional LSTM(BiLSTM) and Transformers. A BiLSTM enhances the capabilities of a Uni-

directional LSTM (UniLSTM or regular LSTM) by adding another LSTM layer to the overall 

structure (Figure 6). Essentially, we have one LSTM layer to feed information or inputs from the 

forward direction and the other LSTM layer feed inputs from the backward direction. The 

outputs from both the LSTM layers are combined to make a more pragmatic and accurate 

forecast of future target variable values. In simple terms, a UniLSTM can only feed and store 

information from the past to anticipate future values, whereas the BiLSTM feeds inputs from 

both the past and future values yielding better results (Pirani et al., 2022). 

Figure 6. Represents the structure for a Bi-directional LSTM.                                                                                                 

Source - https://www.baeldung.com/cs/bidirectional-vs-unidirectional-

lstm#:~:text=Bidirectional%20LSTM%20(BiLSTM)%20is%20a,utilizing%20information%20from%20both%20sides. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A new type of architecture altogether, transformers are making waves in the ML and Deep 
Learning community by outperforming highly optimized LSTMs. Based on the promising results 
comparing transformers to RNN approaches (Shi et al., 2022), we wish to build a transformers 
algorithm to evaluate its performance on this dataset compared to our RNN model approaches. 
A fundamental difference in the operation of a transformer compared to an RNN is that the 
recurrent networks tend to process data/token sequentially and lose important information over 
time due to vanishing gradients (Figure 7). Transformers, on the other hand, establish direct 
connections to all previous time stamps of data allowing for information to be stored and 
remembered for almost infinitely long sequences. Another important distinction is that 
transformers use an algorithm called self-attention to read all input at once (allowing for 
parallelization) while identifying potentially the most useful sequences to accomplish an 
assigned task. Another component of our future work involves us exploring the idea of “Nesting” 
our models together. This means that we would take the predicted results from an upstream 
sensor and feed it as the input to a downstream station for better overall predictive 
performance. We hope to modify the architectures of our algorithms to work in this nested 
format to leverage data from even more sensors and expand our study area to the larger Esopus 
Creek watershed. Additionally, we hope to expand the scope of our algorithm to other 
catchments in the Catskill River system to predict turbidity ending up in the Ashokan Reservoir.  

 

Figure 7. Demonstrates the structural difference between RNNs and Transformers.                                           

Source - https://medium.com/mlearning-ai/transformer-implementation-for-time-

series-forecasting-a9db2db5c820 
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Streamflow and Time Series data were downloaded from:  

• https://waterdata.usgs.gov/nwis/dv/?site_no=01362370&amp;agency_cd=USGS&amp;
%3Breferred_module=sw.   

New York State Mesonet data were retrieved February 26, 2022, from:  

• https://www2.nysmesonet.org/about/sites#network=nysm&stid=tann 
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