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Abstract 
 
River Basins in New Mexico and Arizona are heavily impacted by monsoon season precipitation. 
Seasonal forecasts of monsoon precipitation for the US Southwest are not typically skillful, but 
forecasts of recurring large-scale weather patterns, or “weather types” have shown promise. In 
this study, we develop an experimental monsoon precipitation forecast using weather types 
developed for Arizona and New Mexico. We use a generalized linear modeling statistical 
framework with historical reanalysis data to develop functional relationships between monsoon-
season precipitation and the number of days associated with specific weather types. Specifically, 
we predict the categorical precipitation likelihood (i.e., above- or below-median, or above-
average, average, or below-average tercile). Further, using hindcasts (i.e., retrospective 
forecasts) produced by the European Centre for Medium-Range Weather Forecasts (ECMWF), 
we demonstrate when these forecasts are skillful as compared to climatology. Finally, we 
describe an online Google Colab Notebook that has been developed to allow managers to 
download real-time ECMWF forecasts, assign the weather types associated with each forecast 
day, and make probabilistic precipitation predictions. 
 

Introduction 
 
Previous reviews of forecasting products for the US Southwest indicate that seasonal forecasts 
tend to underpredict monsoonal precipitation (Hartmann et al. 1999) and recent work shows 
that available monsoon precipitation forecasts are not skillful (Prein et al. 2022). This is not 
surprising given the small-scale processes that contribute to monsoonal convection, which are 
not resolved at the coarse spatial scales at which most forecast models are run. However, 
monsoonal moisture can be a critical component of summertime water supply in the 
Southwestern US (Towler et al. 2019), and key water management decisions are made in late 
spring and early summer based on monsoon forecasts.  This study seeks to improve these 
seasonal monsoon forecasts.  
 
To understand monsoonal changes, Seneviratne et al. (2012) recommend the consideration of 
large-scale circulation and dynamics, rather than just precipitation. One appealing approach is 
to identify large-scale atmospheric patterns that can be related statistically to precipitation 
(Maraun et al. 2010; Wilby et al. 2004). Prein et. al. (2016) identified so-called “weather types” 



(WTs), or large-scale atmospheric patterns that are associated with precipitation, and developed 
WTs for the continental US to examine recent precipitation trends. Prein and Mearns (2021) 
identify extreme-precipitation-producing WTs for major watersheds in the continental US. 
Towler et al. (2020) use WTs developed for New Mexico with extreme value theory to 
characterize extreme monsoonal precipitation. In Prein et al. (2022), WTs for Arizona and New 
Mexico monsoon seasons were developed and shown to skillfully capture monsoonal moisture 
in retrospective forecasts produced by the European Centre for Medium-Range Weather 
Forecasts (ECMWF).   
 
This study uses the WTs developed in Prein et. al. (2022) to develop probabilistic forecasts of 
monsoon precipitation. We use a generalized linear modeling (GLM) statistical framework with 
historical reanalysis data to develop functional relationships between the number of days 
associated with specific WTs and monsoon-season precipitation characteristics. Specifically, we 
predict the categorical precipitation likelihood (i.e., above- or below-median, or above-average, 
average, or below-average tercile). Further, we utilize ECMWF hindcasts (i.e., retrospective 
forecasts) to quantify the skill of this approach as compared to climatology at different forecast 
lead times. Finally, we describe an online Google Colab Notebook that has been developed to 
allow operators to download real-time ECMWF forecasts, assign the WTs associated with each 
forecast day, and make experimental precipitation predictions. 
 

Data 
 
Region and Season 
 
Precipitation associated with the North American Monsoon (NAM) exhibits spatial variability 
(Castro et al., 2012; Ciancarelli et al., 2014). Our analysis examines four regions affected by the 
NAM (Figure 1): western and eastern Arizona (AZ-West and AZ-East) and northern and 
southern New Mexico (NM-North and NM-South). These regions include catchments that are 
important for water management in the region: the AZ regions are relevant to the Lower 
Colorado River Basin and the NM regions are relevant to the Upper Rio Grande and Upper 
Pecos watersheds. For each region, catchments are combined based on a clustering assessment 
conducted in Prein et al. (2022). AZ-West contains HUC1501, HUC1503, HUC1507, HUC1810, 
and AZ-East contains HUC1502, HUC1504, HUC1506, HUC1508. NM-North includes 
HUC1301, HUC140801, HUC130201, HUC130202, and NM-South contains HUC130301 and 
HUC1306. 
 
This study focuses on monsoon precipitation associated with the NAM for the months of June 
through October, examining individual and multi-month prediction periods. In total, there were 
14 prediction periods considered: June through October (JJASO), July through October (JASO), 
June through August (JJA), July through September (JAS), August through October (ASO), 
June through July (JJ), July through August (JA), August through September (AS), September 
through October (SO), June (Jun), July (Jul), August (Aug), September (Sep), and October 
(Oct).     



 
Figure 1. Hydrologic unit codes (HUCs) that exhibit similar weather types (WTs) are combined to create 4 regions: 
Arizona West (AZ-West, red), Arizona East (AZ-East, pink), New Mexico North (NM-North, blue) and New Mexico 
South (NM-South, green). Hatching shows the basin used to derive the WTs. Reproduced from Prein et al. (2022). 

 
Predictor, Forecasts, and Predictand Data 
 
The predictors used in this study were based on WTs that were defined in Prein et al. (2022). 
Prein et al. (2022) uses historical reanalysis data to define synoptic-scale WTs to characterize 
NAM rainfall variability for the same regions in AZ and NM that are analyzed in this paper. To 
characterize the WTs, daily average atmospheric variables from ECMWF’s Interim Reanalysis 
(Dee et al. 2011) within the period 1982 to 2018 were examined. Results from Prein et al. (2022) 
show that the best available variable to characterize the WTs is synoptic-scale moisture 
advection, as represented by the water vapor mixing ratio at 850 hPa (Q850). For each region, 
Q850 is used in a clustering technique to identify three distinct WTs, i.e., days with dry, normal, 
or wet (monsoonal) warm season flow patterns. For this study, the predictors considered are the 
sum of the number of days associated with each defined WT (i.e., dry, normal, or wet) for the 
prediction period.  
 
The next step was to obtain seasonal forecasts of Q850. Initially, we examined seasonal forecasts 
from the North American Multi-Model Ensemble (NMME; Kirtman et al. (2014)) and from 
ECMWF’s Integrative Forecasting System (IFS, Version 5). However, Prein et al. (2022) found 
that the NMME did not produce skillful Q850 forecasts, so only the ECMWF forecasts were used 
here. We downloaded seasonal forecasts of Q850 from ECMWF through the Copernicus Climate 
Change Service (C3S; https://cds.climate.copernicus.eu/cdsapp#!/dataset/seasonal-original-
pressure-levels?tab=form ), including retrospective forecasts for 1993–2016 and operational 
forecasts from 2017-2018. These were pooled together, from 1993-2018, and are referred to in 
this paper as the ECMWF hindcasts. Each ECMWF forecast is initialized on the first of the 
month and runs an ensemble forecast that includes 25 members. Each ensemble member is run 
215 days out (~7 months). Using the same clustering technique that is used for the historical 
reanalysis, each forecast day is assigned to a WT (dry, normal, wet).  
 
In this study, precipitation characteristics (i.e., above- or below-median, or above-average, 
average, or below-average tercile precipitation) were the targets for prediction. To calculate 
historical precipitation statistics, we use PRISM (Daly et al. 1997), which is a gridded 4-



kilometer (km) observational dataset. The dataset is available from 1982-2018, but we used 
1993-2018 as the climatological period to overlap with the available ECMWF hindcasts. 
 

Methodology 
 

Generalized Linear Modeling 
 
The predictive statistical framework used in this application is the Generalized Linear Model 
(GLM). In GLM, the response variable, Y, can be assumed to be from a distribution in the 
exponential family, with the specific distribution depending on the response being predicted 
(continuous, discrete, categorical, etc.). A link function is used to specify the distribution and 
relate the expected value of Y to a set of predictors (McCullagh and Nelder 1989): 
 

𝐺(𝐸(𝑌)) = 𝑋𝛽! + 𝑒    (Equation 1) 
 

Where G(.) is the link function, E(Y) is the expected value of the predictand, 𝛽! is the transposed 
vector of fitted model coefficients, X is the predictor matrix, and e is the error. An appropriate 
link function is identified based on the attributes of the predictand. In this case, we use the logit 
link function because we are predicting categorical responses, and the logit link function 
converts the distribution of values into a scale of probability. Specifically, we are interested in 
the likelihood that (i) precipitation is above (or below) the climatological median and (ii) 
precipitation is in the above-average, average, or below-average climatological tercile. For the 
former, the binomial distribution is appropriate, with the logit link function (i.e., logistic 
regression). In that case, the predictand (i.e., precipitation) is set to a categorical value of “1” if 
the value is greater than the climatological median (Q50) and “0” if the value is lower. For the 
latter, the multinomial logit, an extension of logistic regression, is used (i.e., multinomial 
regression). We use the proportional odds model, since the tercile categories are ordered (if the 
categories were not ordered, we would use the ordinal multinomial). The predictand is assigned 
based on the climatological terciles: “1” if it is less than or equal to the 33rd percentile (Q33), “2” 
if it is between Q33 and the 66th percentile (Q66), and “3” if it is above or equal to Q66. 
 
McCullagh and Nelder (1989) provide details on distributions and link functions, as well as on 
coefficient estimation. Here, the GLMs were fitted in the R package VGAM (Yee and Moler 
2022) using the vector generalized linear models (vglm) function. For the logistic, family = 
binomialff, and for the multinomial, family = propodds. The coefficients can be estimated and 
applied internally in the VGAM package. To use the estimated coefficients directly, the following 
equations are employed. From Helsel and Hirsh (1995), the probability of exceeding the median, 
Q50, is estimated as:  
 

𝑃(𝑌 > 𝑄50) = "#$	('!('"))
(+("#$	('!#'"))

     (Equation 2) 
 

From McNulty (2022), to predict the probability of being in the lowest ordered tercile, i.e., less 
than or equal Q33: 
 

𝑃(𝑌 ≤ 𝑄33) = "#$	(,+∗.'!,"('")/)

(+("#$0,+∗.'!,"('")/1)
    (Equation 3) 

 



where B0,1 is the first intercept, and B1 is the slope. To predict the probability of being in the 
upper tercile, i.e., greater than or equal to Q66: 
 

𝑃(𝑌 ≥ 𝑄66) = +
(+("#$0,+∗.'!,%('")/1)

     (Equation 4) 

 
where B0,2 is the second intercept and B1 is the slope. The estimated slope is the same for both 
equations. Finally: 
 

𝑃(𝑄66 > 𝑌 > 𝑄33) = 1 − (𝑃(𝑌 ≤ 𝑄33) + 𝑃(𝑌 ≥ 𝑄66))    (Equation 5) 
       
As mentioned in the Data section, the predictor, x, was based on the WTs developed in Prein et 
al. (2022). We only allow univariate regression (i.e., a single predictor), which could be either 
the sum of the number of dry WT days (sumDry) or the sum of the number of monsoon WT days 
(sumMonsoon) over the prediction period. Further, the predictand and predictors were 
standardized; this is shown here for the predictor: 
 

𝑥23456 =
),478())
96())

    (Equation 6) 
 
where xStand is the standardized variable, avg(x) is the variable average and sd(x) is the variable 
standard deviation.  
 
Evaluation Metrics  
 
To evaluate the relative performance of our forecasts compared to a reference forecast, two skill 
scores were applied: the Brier Skill Score (BSS) (Wilks, 1995) and the ranked probability skill 
score (RPSS) (Wilks, 1995). Climatology was used as the reference forecast (see details in 
subsequent paragraphs).  The BSS is used to evaluate the performance of the categorical forecast 
from the logistic regression:   
 

𝐵𝑆𝑆 = 1 − '2&'()*+,-
'2./01+-'/'23

     (Equation 7) 

 
where the BSForecast is the Brier Score (BS) for the forecast, defined as: 
 

𝐵𝑆:;<=>493 =
∑ (@0,;0)%4
05"

A
     (Equation 8) 

 
where pi refers to the forecast probabilities, oi refers to the observed probabilities (oi = 1 if the 
observed precipitation exceeds the median, 0 otherwise), and N is the sample size (i.e., number 
of years). BSClimatology is the BS for climatology, which is also calculated from the above equation, 
but for every year uses climatological probabilities, i.e., pi 0.50 (since there are two categories: 
above or below the median). BSS values range from negative infinity to 1. BSS<0 indicates that 
the forecast has less skill than climatology (equal chances). BSS 0 indicates equal skill, and a 
BSS>0 indicates more skill, with 1 being a ‘‘perfect’’ forecast.  
 



The ranked probability skill score (RPSS) is used to evaluate the multinomial logit forecast 
performance (Wilks, 1995) for multiple categories (below-average, average, and above-average 
precipitation terciles): 
 

𝑅𝑃𝑆𝑆 = 1 − BC2&'()*+,-
BC2./01+-'/'23

     (Equation 9) 

and 
𝑅𝑃𝑆 = ∑ ;∑ <𝑝D,F − 𝑜D,F?

GH
FI+ @A

DI+      (Equation 10) 
 

where for a given year, i, p=(pi,1, pi,2, …pi,k) and k is the number of categories (=3 in our case); 
RPS is calculated for the forecast using the multinomial logit, and RPS is calculated for 
climatology using the climatological probabilities (=.33).  
 
For both the BSS and RPSS, the data are standardized and evaluated using leave-one-out cross-
validation; where in this case one year is left out of the total of 26 years that are available. For 
example, if 1993 is being predicted, only 1994-2018 are used in the prediction, and so on.  We 
point out that cross-validated scores are more representative of actual model performance since 
they are predicting blindly, like a real forecast would. 
 

Results 
 

Precipitation Relationship with Weather Types (June – October) 
 
For each of the regions for the June through October (JJASO) prediction period, we examine the 
linear relationship between historical precipitation from PRISM and the WT frequencies derived 
from the historical reanalysis. As expected, Figure 2 shows that there is a negative correlation 
between precipitation and the number of dry WT days (sumDry), and a positive relationship 
with the number of monsoon WT days (sumMonsoon). For AZ-West, the magnitude of the 
relationship with sumDry and sumMonsoon is similar (-0.47 and 0.45). For AZ-East, there is a 
strong relationship with the sum of the number of normal WT days (sumNormal) – a predictor 
that is not considered here; but even so, the sumDry has a higher absolute value (-0.67). For 
NM-North and NM-South, the magnitude of the relationship with sumMonsoon is the strongest, 
where correlation is 0.55 and 0.67, respectively. 
 
Applying the WTs to a historical reanalysis gives a sense of the upper limit of predictability, i.e., 
since it is based on the historical observations. But in this study, we are interested in 
predictability based on existing forecasts (not historical observations), so we examine the 
predictability based on the ECMWF hindcasts for different lead times. Figure 3a shows the 
correlation between historical precipitation and the hindcasted number of monsoon days for 
different leads. Leads are referred to by their month number (i.e., 4 refers to an April issued 
forecast, etc.). We note that the predictand period decreases as lead months get closer to the 
prediction period, i.e., leads 4, 5, and 6 predict 5 months (June-October; JJAOS); lead 7 predicts 
4 months (July-October; JAOS); and lead 8 predicts 3 months (August-October; ASO). The 
correlations with the number of monsoon days are positive, though the magnitude is variable, as 
shown in Figure 3a. The highest correlation seen is in AZ-East, which has a correlation of r=0.7 
for the lead month 6 prediction of JJASO, whereas the highest correlation for both NM regions 
is 0.4, but is seen consistently for NM-South across lead months 6 and later and in NM-North 
for lead month 7. Overall, NM-North tends to have lower correlations than the other regions, 



and NM does not have any skill in for lead month 4 (April) in the North or South. Some of the 
possible reasons for this are noted in the Discussion and Conclusions. Figure 3b shows the 
correlation between historical precipitation and the number of dry WT days from the ECMWF 
hindcasts. The correlations with the number of dry WT days are negative (Figure 3b), with lower 
magnitudes than the correlation of the number of monsoon WT days (Figure 3a). 
 

 
Figure 2. Pearson’s correlation between prediction period of June-October (JJASO) average historical precipitation 

from PRISM and the sum of weather types (WTs) from the historical reanalysis. 
 

 

 
Figure 3. Pearson’s correlation between seasonal average historical precipitation and the sum of the number of a) 
monsoon WT days (sumMonsoon) and b) dry WTs (sumDry) from the ECMWF hindcasts by lead time. Leads 4, 5, 
and 6 predict June-October (JJAOS); lead 7 predicts July-October (JAOS); lead 8 predicts August-October (ASO). 

 
 
 
 



Prediction Skill for Generalized Linear Modeling (June – October) 
 
In this section, we use the GLM framework to translate the WT information to precipitation 
characteristics (e.g., above- and below-median, and the terciles), for both the historical 
reanalysis and the hindcasts. We examine the skill scores (BSS and RPSS) for the JJASO 
prediction period (Figure 4) for several lead times and predictor combinations, i.e., the predictor 
can be the sum of the number of dry or monsoon WT days, and it includes both cross-validated 
and not cross-validated scores. We point out that cross-validated scores are more representative 
of actual model performance since they are predicting blindly, like a real forecast would. Pooling 
of results from several combinations of lead times allowed us to see general patterns for this 
prediction period.  
 
AZ-East and NM-South show the expected pattern that as lead time decreases, the skill scores 
increase; this relationship is less clear for AZ-West and NM-North. The figure also shows the 
skill scores based on the historical reanalysis, which represent the upper limit of predictability, 
or of a “perfect forecast”. However, since forecasts are never perfect, the skill scores from the 
historical reanalysis tend to be higher than the skill scores using the ECMWF hindcasts at the 
given leads. Only positive skill scores indicate that the skill is better than climatology. For this 
prediction period, we see that for lead months 4 and 5, all the GLMs from NM-North and NM-
South are below zero. Both AZ-East and AZ-West have GLMs that are positive for all leads, as 
indicated by parts of the boxplot being above the zero line. NM-North and NM-South start 
showing positive skill for the GLMs for lead month 6. 
 

 
Figure 4. For the June-October prediction season, Brier Skill Score (BSS; left) for the logistic regression and Rank 
Probability Skill Score (RPSS, right) for the multinomial regression using ECMWF hindcasts for leads 4, 5, and 6, as 
well as the historical reanalysis. Each boxplot contains 4 skill scores (sumDry, sumDry/cross-validated, sumMonsoon, 
sumMonsoon/cross-validated). Skill scores greater than zero have skill over climatology.  
 
Figure 5 demonstrates the BSS for the New Mexico regions, where results are broken out by 
predictor and cross-validation method. For New Mexico for JJASO, as expected, Figure 5 shows 
that the cross-validated BSS is always lower than when it is not cross-validated; this is because 
cross-validation is a blind forecast, more like it would be in a real operational setting. Also, the 
skill generally improves with lead time, and is most skillful for the reanalysis. Results are similar 



for the Arizona regions (figures not shown). Interestingly, for NM-North sumMonsoon and 
sumDry tend to be similar in terms of their skill. For NM-South, both predictors are similar in 
terms of the reanalysis, but sumMonsoon is a better predictor for lead months 4 and 5, and 
sumDry is better for lead month 6. 
 

 
Figure 5. For the June-October prediction season, Brier Skill Score (BSS) for logistic regression using ECMWF 

weather type (WT) hindcasts for leads 4, 5, and 6, as well as the WTs from the historical reanalysis. Colors indicate if 
the predictor is the number of dry days (sumDry) or monsoon days (sumMonsoon), and the shape indicates if it is 

cross-validated (xval). 
 
Skillful GLMs for all Prediction Periods 
 
In the above section, we looked at skill diagnostics for the JJASO prediction period. However, in 
an experimental workflow, we are interested in all model combinations that are skillful for any 
of the 14 prediction periods (monthly or multi-monthly). As such, next we subset all GLMs that 
are skillful under cross-validation, that are standardized, and allow either sumMonsoon or 
sumDry as the univariate predictor. This is summarized below: 
 

• BSS or RPSS must be > 0 when using the cross-validated Reanalysis  
• BSS or RPSS must be > 0 when using the cross-validated ECMWF hindcasts  
• Data is standardized (in a cross-validated manner) 
• Can use either sum of monsoon or dry days as univariate predictor 

 
Using the above criteria, Figure 6 pools the cross-validated ECMWF skill scores (RPSS and BSS) 
for all the models that were found to be skillful for each region. The median skill score for 
Arizona-West and Arizona-East is 0.11 (n=23 models for each region), whereas NM-North has a 
median = 0.063 (n=16 models) and NM-South has a median = 0.052 (n=37 models). In general, 
the medians for Arizona are higher than for New Mexico.  
 

 



 
Figure 6. Cross-validated skill scores for each region; BSS = Brier Skill Score; RPSS=Rank Probability Skill Score. 
 
Skillful Models for NM-South:  Figure 6 pools all the skillful models for all the regions, 
but it is also illustrative to examine all the skillful models for a single region. Here, we use the 
example of NM-South, both for the logistic regression (Table 1) and for the multinomial 
proportional-odds regression (Table 2).  
 
Of the 37 skillful models for NM-South, 19 of the models were from the logistic regression. Table 
1 shows the logistic models by lead time, prediction period, and predictor. The table also 
includes the standardization values for the predictors from Equation 6 (avg(x) and sd(x)), as 
well as the intercept and slope terms from Equation 2; these are derived from data for the full 
period (i.e., they are not cross-validated, since in the cross-validated mode the values change 
with every value dropped). The table also includes the climatological median (Q50) for the 
season being predicted.  
 
The remaining 18 skillful models for NM-South came from the multinomial proportional-odds 
regression. The results are shown in Table 2 for each lead, prediction period, and predictor. The 
table also includes the standardization values for the predictors from Equation 6, as well as the 
intercept and slope terms from Equation 3 and 4; again, these are derived from data for the full 
period. The table also includes the climatological terciles (Q33 and Q66) for the season being 
predicted. These tables are queried in the Google Colab Notebook developed as part of this 
study, which is described next. 
 
Online Google Colab Experimental Forecast Notebook 
 
To facilitate an experimental real-time forecast for water managers, the workflow and results from 
this study have been used to develop an online Google Colab Notebook. The Notebook is 
developed in Python and also ingests R code. The Notebook provides instructions for downloading 
real-time forecasts from ECMWF. Once the ECMWF forecasts are downloaded, the Notebook can 
be run by a user for the operational workflow described. The user first selects a region; here, we 
will continue with the example of NM-South. Next, the Notebook assigns WTs for each day of the 
ECMWF forecast ensemble; Figure 7 plots the ensemble mean WT frequency for June through 



October of 2020. Then, the ensemble average WT predictor is used in the skillful statistical 
model(s) for that lead time (e.g., Tables 1 and 2). As mentioned, Tables 1-2 include the predictor 
averages and standard deviations needed to standardize in Equation 6, as well as the intercept 
and slope terms needed in Equations 2, 3, and 4. We note that the intercept and slope coefficients 
come from the fitting of all the available reanalysis data (1993-2018), and is not cross-validated 
(this is because there are different coefficients for every cross-validated fit, and we are now using 
all the available data for a future forecast, rather in an evaluative hindcast mode). For lead 6, there 
are 7 skillful binomial models for NM-South (Table 1). After downloading the lead 6 (June) 
ECMWF forecast from 2020, we run the Notebook, resulting in the output shown in Table 3. 
 

Table 1. Logistic (binomial) regression models for NM-South that were skillful in terms of the cross-validated 
ECMWF (Ecmwf_xval) and reanalysis (Rean_xval); BSS = Brier skill score; M = sumMonsoon, D = sumDry. 

  

 
Table 2. Multinomial (propodds) models for NM-South that were skillful in terms of the cross-validated ECMWF 

and Reanalysis; RPSS = Rank Probability Skill Score; M = sumMonsoon, D = sumDry. 

 
 

Lead 
Month

Predicted 
Season

BSS 
(Ecmwf_xval)

BSS 
(Reanalysis)

BSS 
(Rean_xval) x avg(x) sd(x) intercept1 slope

Q50 
(mm/Day)

4 SO 0.048 0.38 0.27 M 10 1.8 0.097 2.0 1.3
5 SO 0.27 0.38 0.27 M 9.3 1.3 0.097 2.0 1.3
5 SO 0.26 0.44 0.33 D 28 2.4 -0.013 -2.5 1.3
5 AS 0.13 0.16 0.020 D 6.8 1.2 -0.044 -1.0 1.7
5 ASO 0.12 0.54 0.46 D 29 2.4 0.079 -3.3 1.6
5 ASO 0.11 0.35 0.24 M 29 2.7 -0.11 1.8 1.6
5 Sep 0.0096 0.46 0.36 M 8.7 1.2 0.28 2.7 1.5
6 SO 0.21 0.38 0.27 M 9.6 1.4 0.097 2.0 1.3
6 SO 0.11 0.44 0.33 D 28 2.9 -0.013 -2.5 1.3
6 Oct 0.073 0.18 0.061 M 0.61 0.39 0.16 1.4 0.8
6 Jun 0.035 0.45 0.33 D 13 4.0 -0.19 -3.2 1.0
6 Oct 0.015 0.48 0.38 D 22 2.1 0.066 -2.4 0.8
6 ASO 0.011 0.35 0.24 M 30 2.6 -0.11 1.8 1.6
6 JJA 0.0063 0.17 0.046 M 41 3.9 0.0077 1.0 1.6
7 SO 0.11 0.38 0.27 M 8.1 1.7 0.097 2.0 1.3
7 Jul 0.034 0.19 0.057 D 2.7 2.5 -0.11 -1.1 1.9
7 JASO 0.0067 0.22 0.10 M 40 6.3 -0.055 1.3 1.6
8 Aug 0.27 0.37 0.26 M 19 3.6 0.0064 1.9 1.7
8 SO 0.13 0.44 0.33 D 27 3.7 -0.013 -2.5 1.3

Lead 
Month

Predicted 
Season

RPSS 
(Ecmwf_xval)

RPSS 
(Reanalysis)

RPSS 
(Rean_xval) x avg(x) sd(x) intercept1 intercept2 slope

Q33 
(mm/Day)

Q66 
(mm/Day)

5 Sep 0.081 0.30 0.19 M 8.7 1.2 1.2 -0.97 2.1 1.1 2.0

5 ASO 0.073 0.30 0.19 D 29 2.4 1.1 -1.0 -2.2 1.2 1.7

5 AS 0.048 0.12 0.010 D 6.8 1.2 0.69 -0.86 -1.1 1.4 2.0

5 SO 0.029 0.24 0.13 D 28 2.4 0.96 -0.98 -1.8 1.1 1.6

5 SO 0.029 0.15 0.031 M 9.3 1.3 0.79 -0.86 1.2 1.1 1.6

5 Sep 0.025 0.13 0.011 D 6.1 1.1 0.76 -0.81 -1.1 1.1 2.0

6 Jun 0.16 0.33 0.23 D 13 4.0 0.95 -1.2 -2.4 0.8 1.2

6 Jun 0.081 0.13 0.0025 M 3.4 1.5 0.87 -0.72 1.1 0.8 1.2

6 SO 0.060 0.24 0.13 D 28 2.9 0.96 -0.98 -1.8 1.1 1.6

6 SO 0.016 0.15 0.031 M 10 1.4 0.79 -0.86 1.2 1.1 1.6

6 JJA 0.0033 0.18 0.071 M 41 3.9 0.94 -0.76 1.3 1.4 1.8

7 Jul 0.076 0.34 0.23 M 15 4.1 1.1 -1.3 2.4 1.4 2.0

7 Jul 0.075 0.19 0.076 D 2.7 2.5 0.70 -1.1 -1.6 1.4 2.0

7 JA 0.0086 0.15 0.041 M 32 5.4 0.83 -0.81 1.2 1.7 2.1

8 Aug 0.052 0.25 0.15 M 19 3.6 0.95 -0.87 1.6 1.4 2.0

8 Aug 0.024 0.13 0.012 D 0.57 0.54 0.70 -0.86 -1.2 1.4 2.0

8 AS 0.017 0.34 0.23 M 29 4.7 1.0 -1.4 2.4 1.4 2.0

8 ASO 0.016 0.22 0.10 M 30 4.8 0.82 -1.1 1.7 1.2 1.7



 

 
Figure 7. The Google Colab Notebook plots the ensemble mean WT frequency for June through October of 2020. 

 
Table 3. Transposed Colab Notebook output showing logistic (binomial) regression models for NM-South for lead 6 
of 2020. The forecasted probability of being greater than the median (Q50) is quantified by P_greaterQ50 (in bold). 

BSS = Brier skill score; M=sumMonsoon; D=sumDry. 
 

 
 

 
From Table 3, starting with Skillful Model 1 (the first column): the forecast for the prediction 
periods of September-October (SO) is based on the sumMonsoon WT predictor (summed for 
September and October); there are three BSS values reported: first, to understand how this 

1 2 3 4 5 6 7
Predicted season SO SO Oct Jun Oct ASO JJA
Lead Month 6 6 6 6 6 6 6
BSS (Ecmwf_xval) 0.21 0.11 0.07 0.03 0.02 0.01 0.01
BSS (Reanalysis) 0.38 0.44 0.18 0.45 0.48 0.35 0.17
BSS (Rean_xval) 0.27 0.33 0.061 0.33 0.38 0.24 0.046
x M D M D D M M
xnormMean 9.6 27.8 0.61 13.1 22 29.9 40.6
xnormSD 1.4 2.9 0.39 4.0 2.1 2.6 3.9
intercept 0.10 -0.013 0.16 -0.19 0.07 -0.11 0.0
slope 2.0 -2.5 1.4 -3.2 -2.4 1.8 1.0
Q50_mmDay 1.3 1.3 0.80 1.0 0.80 1.6 1.6
P_greaterQ50 0% 0% 13% 2.7% 0% 0% 0%
P_PRISM_mmDay 0.467 0.467 0.348 0.573 0.348 0.558 0.952
Correct? Yes Yes Yes Yes Yes Yes Yes

Skillful Model



logistic regression performed using the ECMWF hindcasts, we see the cross-validated BSS of 
0.21. To put this into context, the BSS for the historical reanalysis is also output, which was 
quite high at 0.38, including in the cross-validated mode, where BSS = 0.27. The result shows a 
~0% chance of being above the median precipitation for SO, which is 1.3 mm/day. Because this 
forecast has already happened, it can be checked using the observed precipitation that fell 
during the prediction period. For SO, the average precipitation from PRISM was 0.467 mm/day, 
which is NOT above the median (=1.3 mm/day), and the forecast was correct. We can see that all 
the ECMWF forecasted probabilities were low, and they all correctly verified. 
 

Discussion and Conclusions 
 

In this paper, we have demonstrated a technique that can provide skillful probabilistic forecasts 
of precipitation characteristics associated with the NAM in the Southwestern US.  This 
technique was applied to two sub-basins of the Lower Colorado River in Arizona and two sub-
basins of the Rio Grande in New Mexico. To facilitate the experimental execution of the 
workflow, we developed a Google Colab Notebook that allows a user to download a real-time 
ECMWF forecast, assign WTs, and run them through the predictive models that were found to 
be skillful for the retrospective ECMWF forecasts (i.e., hindcasts). This paper demonstrates 
results from the Colab Notebook on the NM-South region. 
 
The technique in this study uses weather typing based on the ECMWF forecasts of synoptic-scale 
moisture advection, as represented by the water vapor mixing ratio at 850 hPa (Q850), in 
combination with a statistical technique called Generalized Linear Modeling (GLM).  The skill 
was demonstrated using ECMWF hindcasts, with BSS and RPSS used as skill criteria. For the 
June through October prediction period, Arizona showed higher correlations, and had more 
predictability, including as early as April (i.e., lead 4). Further, pooling the results for all skillful 
models, the median skill scores for Arizona were higher than for New Mexico. We note that 
some of the reasons for the skillful correlations with the hindcasts are investigated in Prein et al. 
(2022); in short, they find that the ECMWF hindcasts faithfully represent key synoptic features 
of monsoon rainfall, including the ocean teleconnections. AZ precipitation has a strong ocean 
teleconnection, whereas NM’s precipitation is more complicated, since its monsoon can come 
from two sources (Gulf of California or Gulf of Mexico), resulting in less predictability. Both 
regions in New Mexico were found to have skillful GLMs, with the skill varying depending on the 
region, lead, predictor, and prediction period. Overall, for NM-South, there were 37 skillful 
models, and for NM-North there were 16 skillful models. There were 23 skillful models for each 
region in Arizona. We also investigated using the number of normal WT days as a predictor. 
However, although this resulted in a few more skillful models, this in essence lumps the number 
of monsoon and number of dry days together, which is difficult to interpret. 
 
A key aspect of this study was the close collaboration between NCAR scientists and Reclamation 
water management staff, who have been testing the forecast techniques to support current-year 
water operations. Continuing collaboration could be used to refine these forecasts. Our skill 
criteria was for the BSS or RPSS to be greater than zero for the cross-validated models, and this 
low threshold for skill needs to be considered when these forecasts are evaluated or used.  In 
future studies, this skill criteria could be refined (e.g., made more conservative) by having a 
higher threshold for skill (e.g., >0.05).  
 
The functional relationships between the precipitation and WTs are developed based on 
historical reanalysis, but we point out that climate is not stationary (Milly et al. 2001). As such, 



the GLMs should be regularly updated and re-evaluated as new data come available. Further, 
these models could be compared with other statistical approaches that are nonlinear, such as 
machine learning (random forests, neural networks etc).  
 
Finally, the output from this work could be used to further inform water management. One 
successful approach has been to apply the probabilistic climate forecasts to streamflow trace 
weighting schemes (e.g., Werner et al. 2004, Baker et al. 2021, Towler et al. 2022). The 
importance of evaluating improvements in streamflow forecasts in terms of decision-relevant 
terms (e.g., operational reservoir projections) has also been underscored in recent research, 
(Towler et al. 2022; Woodson et al. 2021), and could be explored as an enhancement of these 
results. 
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