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Abstract 
 
In 2021, the Bureau of Reclamation (Reclamation) and the California Department of Water 
Resources (DWR) jointly requested Reinitiation of Consultation on the Coordinated Long-Term 
Operation of the Federal Central Valley Project (CVP) and the State Water Project (SWP), 
henceforth referred to as the 2021 LTO. The motivation for the reinitiation was the extensive 
Western drought that required further analysis beyond the 2019 LTO to determine appropriate 
operations under the drier and warmer conditions. 

Extensive and ongoing work on climate change in California has shown that warming 
temperatures and changing weather regimes are likely to have a significant impact on CVP/SWP 
water resources. To describe future system management under these potential future conditions, 
it is necessary to incorporate projections of future climate effects within the LTO analysis. It is 
also prudent to incorporate climate change into the analysis in such a way that recognizes the 
inherent uncertainty associated with climate projections in order to plan for a broad range of 
potential future CVP/SWP operational conditions. 

The overall goal of this climate analysis is to inform the development of inputs necessary for water 
operations, temperature, and temperature dependent fish morality (TDM) models which 
comprise the core 2021 LTO analysis. This requires determining climate scenarios that are likely 
representative of future climate conditions within California. Consistent with many of the 
previous efforts mentioned above, this determination is made by evaluating the accuracy of the 
general circulation models (GCMs) over the historical period in comparison to observationally 
informed datasets such as the Parameter-elevation Regressions on Independent Slopes Model 
(PRISM). Though good historical performance is not necessarily an indicator of future 
performance, notably poor performance in the historical period calls into question the reliability 
of a GCM for predicting future conditions.  

The climate analysis is founded on a joint Reclamation/DWR understanding of climate change 
science relevant to California water management. The analysis builds upon previous climate 
work, incorporating lessons learned from previous studies and improved best practices. This work 
is representative of current knowledge and data; future efforts should continue to build upon the 
present analysis to further refine understanding of climate effects within California. 

 



Introduction 
 

The Reclamation Central Valley Project (CVP) extends four hundred miles north to south across 
the heart of California, consisting of six major storage facilities and numerous other smaller 
facilities as shown in Figure 1 (Maven’s Notebook, n.d.). Although the facilities are cooperatively 
managed for multiple purposes, the primary goals of the project are water delivery and 
environmental compliance. The CVP is managed in conjunction with the California State Water 
Project (SWP) which, together with smaller locally managed facilities, jointly regulate flows 
within the California basin. The CVP/SWP operate based on regulatory guidance developed from 
an understanding of the California basin hydrology. When hydrologic conditions shift 
significantly to impact CVP/SWP operations, Reclamation initiates a consultation process with 
State and other stakeholder groups to formulate new operational guidance. Given the ongoing 
drought through the American West and generally warming trends, Reclamation initiated a 
consultation in 2021, referred to here as the 2021 LTO for brevity. 

 

 
Figure 1.  Map of the Reclamation Central Valley Project. 

 



Understanding how climate change will impact hydrology is critical for understanding future CVP 
operations. Climate change is anticipated to impact operations both through hydrologic changes 
as well as repartitioning the available water among different uses. Hydrologic shifts will alter 
allocations based on total available water, storage, melt timing, evaporation, and increased 
consumptive uses. Meteorologic and hydrologic changes may require reallocation of water away 
from human uses toward environmental compliance with instream flow and temperature targets. 
The magnitude and timing of climate change driven shifts dictate when and the extent to which 
CVP operations will need to adapt to the new conditions. It is therefore important to estimate the 
magnitude and timing of climatic changes to account for them within the 2021 LTO. 

However, the timing and magnitude of hydrologic shifts under climate change are highly 
uncertain. While this is in many respects driven by the realized greenhouse gas concentrations, it 
is also a function of the inherent uncertainty of climate feedback mechanisms and the ability of 
the scientific community to describe their interaction. It is therefore necessary to develop an 
approach that recognizes the most likely outcome as well as the range of potential outcomes and, 
in that process, removes scenarios that are known to be infeasible. Often referred to as model 
culling, selection, or subsetting, model selection maintains only those estimates that are credibly 
representative of future conditions (Raju & Kumar, 2020). The method offered in the present 
work is one selection approach focused specifically on water resources applications. Although the 
approach generalizes across basins, the analysis centers on generating a credible climate change 
model ensemble subset of future CVP conditions. 

 
Methods 

 

Consistent with previous work in California – such as the California Department of Water 
Resources (DWR) Climate Change Technical Advisory Group’s (CCTAG) “Perspectives and 
Guidance for Climate Change Analysis” (Lynn et al., 2015), the Water Storage Investment 
Program (WSIP) (California State Water Resources Control Board, 2022), and the Delta 
Conveyance Project (DCP) (California Department of Water Resources, 2022), and Reclamation’s 
SECURE Water Act Report 2021 (Bureau of Reclamation, 2021) – this analysis makes use of 
General Circulation Models (GCMs) from the Coupled Model Intercomparison Project 5 (CMIP5) 
used in the fifth assessment report of the United Nations Intergovernmental Panel on Climate 
Change (IPCC) (World Climate Research Program, 2020). The CMIP5 GCM ensemble consists of 
multiple models which each provide simulations over a historical period (1950-2005) as well as 
simulations of future conditions under a number Representative Concentration Pathways (RCPs), 
often referred to as emissions scenarios. As with the previous work mentioned above, this study 
considered two RCPs for high and low emissions. CMIP5 accounts for numerical model 
uncertainty, in considering the GCM ensemble, and the emissions uncertainty, in the two RCP 
pathways. A limitation of the approach, and that of the CMIP5 dataset, is an uncharacterized 
degree of uncertainty from the initial condition and meteorological forcing assumptions (Lehner 
et al., 2020).  

Past efforts have typically evaluated the raw GCM output or applied simplistic corrections to said 
output. However, to apply GCM output for water resources planning, the course spatial grid of 
the GCMs must be “down-scaled” to provide input data on operational spatial scales. In contrast 
with previous methodologies, the work here evaluates the performance of the CMIP5 models after 
downscaling. There are many methods of downscaling GCM data, the choice of which itself 
introduces additional uncertainty. The downscaling method used in this work is the Locally 



Constructed Analog (LOCA) Method of Pierce et al, 2015 which has been used in Reclamation’s 
2021 SECURE Water Act Report to Congress and is considered the state-of-practice (Pierce et al., 
2015).  

The present analysis can thus be seen as an extension of previous approaches with new methods 
and metrics intended to better describe the skill of the GCMs and the paired downscaling 
methods. Skill evaluation with GCM ensemble subsetting is necessary due to the variability in 
GCM numerical implementations as well as the LOCA downscaling and bias correction. 
Depending on the GCM numerical implementation, the model formulation may be more or less 
skillful at capturing the California climate. Without removal from the ensemble, an unskillful 
model may distort future climate estimates which would carry through the modeling workflow to 
result in unrealistic CVP operations. Evaluation after downscaling assesses the joint performance 
of the GCM/downscaling as the downscaling operation can significantly alter the GCM 
characteristics. While this approach neglects characterizing if a GCM numerical implementation 
is appropriate for California, it would capture any performance degradation caused by an 
improper numerical formulation.  

The resulting GCM ensemble subset uses the performance of the GCMs over the historical 
reanalysis period as a proxy for being credibly representative of future climate conditions. 
Downscaled GCM performance was evaluated using metrics of temporal skill, spatial skill, and 
interannual variability over the historical period. Poor performing GCMs based on historical 
temperature and precipitation skill were removed from the GCM ensemble for predicting future 
conditions. All comparisons were made to the 800m Parameter-elevation Regressions on 
Independent Slopes Mode (PRISM) dataset over the historical period (PRISM Climate Group, 
Oregon State University, 2020). Although temperature was evaluated within the framework, 
subsetting was not done on any temperature metric as performance was substantially similar 
among the ensemble members. Evaluation was done over the California HUC2 basin, which 
comprises all of the California Central Valley (U.S. Geologic Survey, 2022).  

 

Temporal 
 

Temporal skill is intended to highlight any systematic annual error in the downscaled GCMs 
across the historical period. The mean annual precipitation and difference from PRISM is shown 
in Figure 2. No GCM performs meaningfully worse on average than the ensemble due to the bias 
correction performed bythe LOCA downscaling. No GCMs were therefore eliminated based on 
temporal performance.  



 
Figure 2.  Mean average error of the GCMs across the Central Valley over the historical reanalysis period. The 

centerline represents the median, the range of the bar is the 25th/75th quartiles, and the whiskers extend beyond the 
box by 1.5 times the interquartile range. 

 

Spatial 
 

Spatial skill is intended to evaluate any systematic bias in where the downscaled GCMs place 
precipitation across California. This is of particular concern because, even if there is no temporal 
bias, changes to the spatial precipitation distribution from north or south or east to west can 
significantly alter CVP/SWP operations. As the dominant precipitation mechanism in California 
is atmospheric rivers, the zonal (north-to-south) distribution of precipitation is the primary 
precipitation metric. 

Spatial skill was evaluated by a Kolmogorov-Smirnov test on the north to south placement of 
longitudinally averaged zonal precipitation. Figure 3 gives the score for each GCM. As with the 
temporal analysis, skill across the GCMs was similar due to the bias correction and no GCMs were 
eliminated based on this metric. 

 



 
Figure 3.  Kolmogorov-Smirnov score for the zonal precipitation distribution across the Central Valley over the 

historical reanalysis period.  
 
Interannual variability 
 

Interannual variability describes the transition through wet/dry cycles typical of California. The 
magnitude of the cycle as well as its periodicity are key criteria for water management. Evaluation 
of interannual variability was separated into two components – continuous magnitudes and 
categorical water year typing – to highlight different behavior within the GCMs.  

Continuous water year precipitation magnitudes were evaluated against the PRISM dataset using 
a Kolmogorov-Smirnov test. This tests that the overall frequency of precipitation magnitudes is 
similar between the GCMs and PRISM, scores of which are given in Figure 4. GCMs performing 
more than one standard deviation worse than the mean score were eliminated from the GCM 
ensemble.  



 
Figure 4.  Kolmogorov-Smirnov score for the mean precipitation magnitude distribution across the Central Valley 

over the historical reanalysis period.  
 

Categorical evaluation was done by defining water year types based on percentiles referenced to 
the PRISM record. The percentiles were taken as given in Table 1. The magnitudes from the 
PRISM percentiles were applied to the GCMs to evaluate the transition rate between the water 
year types within each GCM as well as the mean average error of each water year type within the 
GCM. The PRISM percentiles were maintained to evaluate the water year types within the GCMs. 
Transition rates were ordered as a continuous distribution and evaluated using a Kolmogorov-
Smirnov test, the values of which are given in Figure 5. GCMs performing more than one standard 
deviation worse than the mean score were again eliminated. Any GCMs having greater than 10% 
magnitude error for any individual water year type were also eliminated. These two criteria ensure 
the frequency of the transitions as well as the magnitudes are consistent between the GCM and 
the historical record. 

Results 
 

The GCM subset retained 20 of the 32 CMIP5 LOCA downscaled GCMs that had reasonable 
performance over the historical period. These members included the five original members from 
the CCTAG selection. A list of the remaining GCMs is given in Table 2. Removal of the historically 
worst performing GCMs over California increases confidence that the remaining subset of GCMs 
are likely to be representative of future conditions in the region under climate change.  



Table 1.  Percentile thresholds within the PRISM dataset used to establish water year types  

 

Year Type 
Percentile Range 

Lower Upper 
Critical Dry -- 10% 
Dry 10% 25% 
Below Normal 25% 50% 
Above Normal 50% 75% 
Wet 75% -- 

 
Figure 5.  Kolmogorov-Smirnov score for the water year transition distribution across the Central Valley over the 

historical reanalysis period.  
 

The two RCPs from each of the 20 selected GCMs form an ensemble of 40 climate projections 
which describe the range of future climate conditions in California. Because future emissions are 
not known, the high and low RCP are considered equally likely. The range of these 40 climate 
projections is due to the uncertainty in the climatological response to greenhouse gas emissions 
as well as limitations in physical process representations of the GCMs. In order to address this 
uncertainty, it is necessary to incorporate multiple climate scenarios into the LTO analysis. 
Multiple climate scenarios allow the 2021 LTO to account for both the climate and modeling 
uncertainty by looking across range of likely variability bounded by the GCMs.  

 



Table 2.  CMIP5 ensemble members with selection and justification for exclusion  
 

General 
Circulation Model Excluded Justification 

ACCESS1-0 No   
ACCESS1-3 No   
bcc-csm1-1 No   
bcc-csm1-1-m Yes Transition probability  
CanESM2 Yes Dry bin magnitude 
CCSM4 Yes Transition probability 
CESM1-BGC No   
CESM1-CAM5 No   
CMCC-CM No   
CMCC-CMS Yes Critical dry bin magnitude 
CNRM-CM5 No   
CSIRO-Mk3-6-0 No   
EC-EARTH Yes Transition score 
FGOALS-g2 Yes Critical dry bin magnitude; transition score 
GFDL-CM3 Yes Critical dry bin magnitude 
GFDL-ESM2G No   
GFDL-ESM2M No   
GISS-E2-H No   
GISS-E2-R No   
HadGEM2-AO No   
HadGEM2-CC Yes Dry bin magnitude; transition score 
HadGEM2-ES No   
inmcm4 No   
IPSL-CM5A-LR Yes Critical dry bin magnitude 
IPSL-CM5A-MR No   
MIROC5 No   
MIROC-ESM Yes Multiple bin magnitudes 
MIROC-ESM-CHEM Yes Multiple bin magnitudes 
MPI-ESM-LR No   
MPI-ESM-MR No   
MRI-CGCM3 Yes Transition score 
NorESM1-M No   

 

Figures 6 and 7 show the median precipitation and streamflow variability in future conditions for 
the Eight River Index which reflects locations that are relevant to the CVP/SWP water 
management. The streamflow is estimated by averaging the VIC routed GCM ensemble at each 
location (Lawrence Livermore National Laboratory, 2014). The 2021 LTO focuses on the 2040 
climate condition; values are reported as an average around that year. Overall, the median future 
precipitation of all 40 projections is slightly more wet than the historical average while the future 
streamflow is slightly drier. The large increase in precipitation July through September is from a 
relatively small base. This is potentially indicative of greater atmospheric moisture capacity at 



higher temperatures, greater losses due to evapotranspiration, and a shift to runoff earlier in the 
year due to earlier snowmelt as well as a transition from solid to liquid precipitation. 

To represent the range of future variability within the 2021 LTO, the GCM subset will be used to 
construct six climate scenarios referenced to the ensemble variability. A median value in 
temperature and precipitation from the GCM ensemble represents the most likely future climate 
and will serve as the primary decision scenario. Additionally, combinations of the 25th and 75th 
precipitation and temperature changes give hot/dry, hot/wet, warm/dry, and warm/wet 
scenarios to describe the bounds of likely future climate change sensitivity. Finally, an extreme 
hot/dry case will be developed that combines the 95th temperature percentile with the 5th 
percentile precipitation as a stress test scenario for the maximum reasonable impact as predicted 
by the GCM ensemble variability. 

Each of these six climate scenarios are used as inputs for a Variable Infiltration Capacity (VIC) 
hydrologic model based on the historical California hydrology. Temperature and precipitation 
deviations are calculated for 30-year periods centered on 1995 and 2040 for the historic and 
future conditions, respectively. The future temperature and precipitation are mapped back to the 
VIC inputs by creating a quantile map relationship between the historic and future condition for 
each VIC grid cell. Although this approach decouples the VIC input from the physical processes 
represented within a single GCM, it recognizes the overall variability of the GCM ensemble and 
that the ensemble is more likely to predict the variability than any individual GCM alone. The VIC 
meteorology and outputs are used to create inflows to CalSim 3 and forcings for the remaining 
2021 LTO models. 

 
Figure 6. Median relative precipitation change in the catchments above the Eight River Index locations, referenced 

from 1980-2010 and 2025-2055 within the 2021 40 climate projection ensemble 

 



 
Figure 7. Median relative runoff change in the Eight River Index locations, referenced from 1980-2010 and 2025-

2055 within the 2021 40 climate projection ensemble. An average of the prerouted GCM values was utilized 
(Lawrence Livermore National Laboratory, 2014). 

 
 

Conclusions 
 

The 2021 LTO analysis incorporates the state-of-practice in assessing climate change for water 
resources applications, building upon lessons learned in previous regional studies. Given the 
long-term trends identified across the region, it is prudent for Reclamation and CA DWR to 
incorporate climate change effects when evaluating future CVP/SWP operations. While the 
specific shifts due to climate change are highly uncertain and will only be clear once realized, the 
approach developed for the 2021 LTO represents a credible estimate for the likely conditions 2040 
with sensitivity around that estimate.  

It should be noted that intra-annual variability was not used as a selection mechanism given 
limitations in the CMIP5 ensemble. Intra-annual variability characterizes seasonal shifts – such 
as seasonal precipitation timing or seasonal temperatures – that would provide greater fidelity on 
annual climatic patterns. While these can be readily calculated from the GCMs, seasonal patterns 
remain sensitive to the assumed initial conditions and meteorological forcings. Because the 
CMIP5 ensemble is a single initial condition and forcing dataset across the members, seasonality 
is likely only partially characterized. It is hoped that the CMIP6 dataset, which has multiple 
forcing conditions for several of the GCMs, may be better suited to evaluate seasonality as a 
selection mechanism.  



 

The developed approach is a generalized means to evaluate the representativeness of GCMs for 
water resources applications. For basins less driven by the north-to-south precipitation 
distribution, an additional spatial metric can be introduced to evaluate longitude performance. In 
particular, evaluation of interannual variability provides a much-needed water resources metric 
beyond the suite commonly utilized within the atmospheric modeling community. However, the 
current analysis represents a snapshot in both climate understanding and data that should 
continue to be revised in future work as both continue to grow. As CMIP6 data becomes available 
with revised downscaling techniques, the approach should be adapted to that GCM ensemble to 
maintain the best available climate data in water resources.  
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