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Abstract 

The Bureau of Reclamation (Reclamation) manages the Colorado-Big Thompson Project (C-BT), 
which collects water in the headwaters of the Colorado River on the Western Slope of the 
Continental Divide and delivers it to the Big Thompson River on the Eastern Slope. Water 
primarily originates as snowmelt in Rocky Mountain National Park and Grand County, before 
flowing from Grand Lake through Shadow Mountain Reservoir and into Granby Reservoir, a 
group of water bodies collectively referred to as the Three Lakes. Water is primarily stored in 
Granby Reservoir, with additional inputs pumped from nearby Willow Creek and Windy Gap 
Reservoirs. To meet demands, the flow direction is reversed when the Farr Pump Plant lifts 
water to the Granby Pump Canal into Shadow Mountain Reservoir and the connected Grand 
Lake. The Alva B. Adams Tunnel carries water from Grand Lake to the Eastern Slope.  

The unique interconnection and characteristics of the Three Lakes creates a complex physical, 
chemical, and biological system that ultimately controls the water quality in Grand Lake. 
Further, water quality predictions are needed to understand how operational alternatives and 
future summer weather conditions will impact the system. Historically, water quality in Grand 
Lake was monitored by measuring Secchi depth, or simply the depth below the water surface at 
which a Secchi disk is no longer visible. Secchi depth is a measure of the clarity of the water but 
is influenced by optical properties, dissolved constituents, and total suspended solids (TSS) 
including inorganic suspended sediment (ISS), particulate organic matter (POM), and algae. 

An improved approach to estimating Secchi depth should consist of multiple operations 
extending from an initial water quality model – clustering, bias correction, and regression – to 
account for the stochastic nature of the system and uncertainty within estimation. Each of these 
operations builds upon the previous step to maximize the predictive skill. While these 
operations can be implemented separately within traditional regression-based approaches to 
achieve reasonable results, neural networks (NNs) can simultaneously handle all three 
operations within a single architecture to produce a more user-friendly product with potentially 
greater accuracy. This work describes the process for calibrating the initial water quality model 
and using the predicted water quality values from it as inputs to a NN which was constructed 
and trained to improve Secchi depth estimates within the C-BT. 

 

Introduction 
In the early 2000s, local interest in preserving the water quality in Grand Lake resulted in the 
development of a spreadsheet-based Three Lakes Water Quality Model. The Three Lakes region 
and model domain is shown in Figure 1. Hydros Consulting Inc. (Hydros) migrated this model 
to the CE-QUAL-W2 (W2) modeling platform, using version 4.0 (Cole and Wells, 2015) with 
custom modifications, ultimately resulting in the Three Lakes Water Quality Model v1.1 



(3LWQM v1.1). The model documentation provides additional information on the background 
and development of the 3LWQM v1.1 (Hydros 2017). ECAO contracted with the Technical 
Service Center (TSC) to support updates resulting from external peer review of the 3LWQM v1.1 
for its use in the Grand Lake Clarity National Environmental Policy Act (NEPA) process. This 
work summarizes the revisions to the 3LWQM v1.1 and re-calibration, resulting in a version of 
the model referred to in this document as the 3LWQM-TSC v1.0, the ultimate intent of which 
was to inform alternative comparison and management of the system to a water quality criterion 
defined by water clarity as measured by Secchi depth (Reclamation, 2021). As part of the effort, 
the TSC formulated a neural network-based approach to estimate Secchi performance from the 
model, described in the present work.  

 

 
Figure 1. Map of the Three Lakes collection system and water quality sampling locations (+). 

 

In response to external peer review of the 3LWQM v1.1 (Wells et al. 2018), the TSC prioritized 
model revisions from the reviewer recommendations that targeted sediment resuspension, 
model geometry, and model parameterization. Evaluating the most current version of the 
release version of W2 (v4.1 at the time of analysis) and the associated resuspension algorithm, 
the TSC determined that the necessary features needed to isolate resuspension algorithms from 



the larger sediment diagenesis package were not available and that the sediment diagenesis 
package was not ready for full implementation in this project (see release notes for version 4.2 
in Wells 2020). The resuspension algorithm from the sediment diagenesis package was 
rewritten into a custom version of W2 v4.1. As further suggested by the reviewers, this 
algorithm is based on exceedance of a critical scour and is more generally applicable across all 
model segments. In the previous sediment resuspension formulation, the algorithm was only 
applied to user-selected segments and the model was calibrated with resuspension only in 
segments 12-16 in the northern portion of Shadow Mountain Reservoir. The new and more 
general approach is applied to all segments and therefore could support potential NEPA 
alternatives that alter the geometry of Shadow Mountain Reservoir. The vertical discretization 
in Grand Lake was refined to approximately 1 m from 2.5 m. The reviewers recommended using 
consistent reaeration formulae and turbulence closure for the waterbodies. The reviewers 
identified several corrections to model input file errors as well as coefficients that should be 
evaluated. These changes sufficiently altered the model, requiring recalibration to determine 
model performance. 
 

Recalibration was conducted for 3LWQM-TSC v1.0 in line with modeling best practices (Palmer, 
2001). It is considered best practice to conduct calibration when a model is initially created, the 
physical processes within the model are altered, or the domain of the model is modified in either 
space or time. Due to the changes to the 3LWQM model as described above, recalibration of 
model coefficients and parameters was required. Additionally, the availability of new data 
permitted a validation to be conducted to verify model performance. Calibration of the 3LWQM-
TSC v1.0 was done in two phases to improve the understanding of the model and to limit 
computational requirements. Model variables that affect water clarity can be divided into first 
and second order variables based on the magnitude of their effect. Variables that are first order 
have a direct impact on clarity in the system (e.g., chlorophyll as a proxy for algae and TSS). 
Second order variables have less impact and may only have an indirect relationship to clarity 
(e.g., nutrients which act through their effect on algae). This distinction is useful to understand 
how physical processes interact within the model as well as for prioritizing processes for 
additional investigation and refinement. The initial calibration phase focused only on the first 
order clarity variables and model output errors that are directly predictive of Secchi depth, using 
the same values as the 3LWQM v1.1 for all other parameters. The subsequent calibration phase 
expanded the parameters and model output errors to include second order variables in addition 
to the first order variables. Automated calibration was conducted with the Optimization 
Software Toolkit for Research Involving Computational Heuristics (OSTRICH) platform (Loney 
et al., 2020) using the Particle Swarm Algorithm. For additional calibration details, see 
Reclamation 2021. 

 

 Secchi Depth Calculation 
The stochastic nature of the relationship between physical or optical properties and Secchi 
depth is well established in the literature (Davies-Colley & Vant, 1988; Harvey et al., 2019; 
Castillo-Ramírez et al., 2020; Tilzer, 1988). Secchi depth values are a stochastic function of 
optical properties, and optical processes are a stochastic function of physical properties. 
Additionally, while the literature establishes what physical properties are anticipated to 
contribute to Secchi depth, it does not account for how a specific physical property value will 
affect Secchi depth at a particular system state nor the uncertainty associated with that transfer 
function (e.g., a function which converts from the independent to dependent variables).  



As described in the model documentation (Hydros 2017), the 3LWQM v1.1 linear regression 
coefficients were determined using measured values of chlorophyll-a, ISS, POM to measured 
Secchi depth values. This regression then substitutes chlorophyll-a, ISS, and POM time series 
from the 3LWQM v1.1 model to obtain a Secchi depth prediction.  

The regression modeling as described in the 3LWQM v1.1 model documentation can result in 
erroneous Secchi depth predictions. This is because application of any regression model 
developed from measurements to a modeled output does not account for model error and bias. 
The approach allows model error or bias to carry through the Secchi regression to manifest as 
error in the predicted Secchi depth values. If the measured regression were to be applied to the 
model estimated values, a bias correction step needs to be implemented to eliminate the 
propagation of model error into the Secchi depth prediction. Alternatively, the measured Secchi 
depth values can be regressed directly to the modeled values to account for any model error and 
bias. Either of these two methods explicitly account for the model error and would not 
propagate it forward to the Secchi depth values. Accounting for this error is particularly 
important when comparing to Secchi depth thresholds that are absolute, not relative to other 
model simulations. 

Given the large uncertainties in the physical-optical-Secchi relationships and the limited skill of 
the 3LWQM v1.1 linear regression-based Secchi formulation during validation years, the TSC 
concluded that it is likely not suitable to impose a single deterministic relationship among these 
clarity variables, particularly if the modeling system is used to simulate conditions that differ 
from those used to calibrate the models. The TSC therefore determined based on these concerns 
that new approaches for predicting Secchi depth from model output should be explored to 
ascertain if performance improvements were possible. 

 

Methods 
An improved approach to estimating Secchi depth should consist of three operations – 
clustering, bias correction, and regression – to account for the stochastic nature of the system 
and uncertainty within the transfer function. Each of these components builds upon the 
previous step to maximize the predictive skill. While these operations can be implemented 
separately within traditional regression-based approaches to achieve reasonable results, neural 
networks (NNs) can simultaneously handle all three operations within a single architecture to 
produce a more streamlined product with potentially greater accuracy.  

Clustering analysis groups data based on similarity. Used in the context of the Three Lakes 
system, a clustering analysis can identify when different physical processes are dominant. The 
subsequent operations of bias correction and regression can then account for the physical 
process regimes. An initial clustering analysis was performed using the 3LWQM v1.1 regression 
variables as well as hydrodynamic variables from the 3LWQM-TSC v1.0 model. The initial 
clustering analysis indicated a significant dependence on flow rate. Once flow rate dependency 
was removed, no clear clustering was visible from plotting the remaining parameters. To 
determine if the data clustered against any remaining parameters, a Hopkins test was utilized to 
quantitatively evaluate the distribution of each parameter (Holgate, 1965). The test identified a 
medium magnitude of clustering for the remaining parameters. Given that the data were 
clustered without a distinctive visual partitioning, more advanced data analytics methods, such 
as NN methods as is subsequently described, must be used to perform the clustering 
classification. 



Bias correction accounts for and removes any systematic errors the model may exhibit against 
the observational data. Bias correction is necessary when using model output to prevent the 
systematic errors from carrying through subsequent calculations and propagating model bias. 
Correction of model bias is preferred by improving the accuracy of the model itself; however, 
post hoc removal of bias is acceptable if model bias remains or is associated with limited model 
regimes. Bias correction subsequent to clustering analysis gives visibility to model performance 
as different physical processes become dominant within the model. When taken over an entire 
period, a model may be unbiased, although it may be biased locally within physical process 
regimes. The combination of clustering followed by bias correction can identify and correct for 
biases related to a specific physical regime and improve model performance more than bias 
correction alone. 

Regression is the process through which a transfer function is developed to convert an 
independent variable to a dependent variable. Numerous regression methods exist, such as 
linear, nonlinear, and statistical methods. Linear and nonlinear regressions assume a form of 
transfer function based on physical relationships. An optimization is conducted to determine 
coefficients that convert the independent values to the dependent values with the least error. 
Statistical regression approaches go further by not assuming a form of the transfer function but 
rather construct the transfer function during the regression process. All three methods can be 
supplemented with information gained through autocorrelation to determine if adding a lag 
between the independent and dependent variables would improve regression skill. Following 
clustering and bias correction, a regression can be created specific to each physical process 
regime. This allows the transfer function to more accurately account for the specific 
relationships happening within the regime without needing to generalize across regimes with 
reduced performance. 

NNs are a machine learning method to create a nonlinear transfer function between input and 
output variables. NNs can perform data clustering, bias correction, and regression operations 
simultaneously within the network rather than through separate operations. Additionally, the 
NN training procedure can identify trends in the data that may be challenging to extract 
manually through visual inspection. With an appropriate, albeit more complex procedure, it is 
possible to obtain substantially similar results to a NN with the combination of classical 
clustering, bias correction, and regression methods (Mamun et al., 2019; Chen & Liu, 2015). Use 
of NNs are well established in a variety of scientific and engineering applications (e.g., 
Govindaraju, 2000; Yaseen, 2015; Abiodun, 2018). The TSC determined that the use of NNs 
could be beneficial for estimating Secchi depths given their ability to simultaneously perform all 
three operations. 

The independent variables used in the NN were largely analogous to those in the 3LWQM v1.1 
Secchi depth regression, except for extinction depth because it is colinear with the remaining 
chlorophyll, POM, and ISS variables. The W2 model uses these variables to estimate extinction 
depth. Flow rate was added as an input to the NN given it was shown to be a primary clustering 
variable, resulting in four variables used as input to the NN. 

The structure of the NN was determined using an automated training approach. For a test 
network configuration, the NN was trained over the model calibration period. It was then used 
to predict Secchi depth for the seasonal validation runs, smoothed by a 7-day rolling average. 
The MAEs for the calibration and validation years were calculated and averaged to obtain a 
mean error. This training metric sought to distribute the error equally between the calibration 
and validation periods. This is analogous to the operations performed in a classical regression 
case. When formulating a regression, one seeks an expression that captures the calibration 
period with minimal error while not being too overfit to accurately describe the validation 



periods. In much the same way, a NN is constructed with a form that follows these three 
objectives.  

The final selected NN configuration still benefits from human review of the network 
configurations. Balancing error between the calibration and validation periods neglects the 
difference in trend between the predicted and actual Secchi depth values. This can lead to 
portions of the validation period being poorly represented if the network performs better in 
other periods. This can be particularly apparent among the validation years if one year 
demonstrates large improvements at the expense of another. Each improved NN should be 
logged and reviewed to select a configuration which captures the correct trend in addition to 
minimizing error. 

 

Results 

The NN was developed using the scikit-learn MLPRegressor function in the Python 
programming language (Scikit-learn, n.d.). The rectified linear unit activation function was 
utilized with the limited-memory Broyden-Fletcher-Goldfarb-Shanno (LBFGS) solver. The 
regularization term was set to 0.001 with a maximum of 5,000,000 solver iterations per 
configuration. The MLPRegressor function requires specification of a random seed as part of its 
clustering operation. For each network configuration, the algorithm was repeatedly seeded with 
the integer values between 1 and 20 to minimize the effect of poor clustering on the evaluation 
of the network configuration. 

Training was conducted on a Dell Precision 5820 tower with an Intel Xeon W-2135 and  
32 GB of memory. A limitation of the NN approach is that the resulting NN can be machine 
dependent. Given an identical network configuration and random seed value, a user will not be 
able to reproduce the behavior of a network on different system. This issue can be minimized by 
saving a network once it is computed to produce a platform independent NN. Additionally, the 
automated training process can allow the network to be retrained as required, either on a new 
machine or as new data becomes available. A further limitation is the computational intensity of 
the NN training. Each potential network configuration must be solved with multiple random 
seeds to determine its performance. Automated training beyond approximately three network 
layers may require distribution among multiple workstations or use of HPC resources to make 
training tractable.  

The model output from the second order calibration was used within the NN. The selected 
network was three layers with a (3, 11, 4) configuration and random seed of 3. This was the 
second-best network in terms of the output error metric and was selected based on its better 
trend resolution compared to the best case over the validation period. This configuration does 
not exclude the existence of additional network configurations not seen in the training 
configurations that would improve NN performance. 

The NN transfer function performed equally well or better than the 3LWQM v1.1 regression 
approach in both the calibration and validation years based on MAE. Table 1 gives the 
comparison by year. Table 2 through Table 4 are intended to explicitly highlight the skill of the 
Secchi depth formulations over the clarity season (July 1 – September 11), using metrics 
consistent with the clarity goals of the 2016 Grand Lake Clarity Stakeholders Memorandum of 
Understanding. Figure 1 through Figure 3 show the continuous Secchi predictions for each of 
the validation years. The NN approach reduces error over the calibration period by 
approximately 20%. The 2017 performance of the revised model and Secchi NN is excellent, 
reducing MAE by 49% compared to the 3LWQM v1.1 model and regression. The 2018 



performance of the revised approach lags behind the 3LWQM v1.1 regression by 5% and shows a 
25% improvement again in 2019.  

Both approaches find the 2018 management season challenging. In the early season, the NN 
approach better represents the trend seen in the Secchi observations. Around July 1st, pumping 
begins in a strong cyclic manner. This leads both approaches to predict a decrease in Secchi 
depth compared to the strong improvement witnessed in the observations. The decrease 
corresponds to the models predicting a large increase in TSS, shown in Reclamation 2021, that 
is not reflected in the observations. The error in TSS skews the prediction of both approaches for 
the remainder of the season. It is difficult to attribute the TSS overprediction to any specific 
feature of the 2018 model that could be altered a priori to improve forecast skill. The most likely 
explanation for the overprediction is the W2 engine being overly aggressive with sediment 
resuspension as large magnitude, sustained pumping begins for the year; however, more 
frequent TSS sampling would be needed to confirm this explanation or to assess other 
possibilities, such as errors in the inflow concentration input files. 

The observed Secchi depth gradually declines until the late 2018 season when it becomes 
approximately constant. The 3LWQM v1.1 regression predicts a gradual improvement in clarity 
beginning around September 1st through the remainder of the model duration. The NN predicts 
a strong improvement centering on September 10th followed by an immediate correction toward 
the observations around September 22nd. The NN further predicts a worsening of clarity for the 
remainder of the season not covered by observations. While both prediction approaches 
perform poorly, the late season gradual improvement of the 3LWQM v1.1 regression 
corresponds with more observations producing slightly better performance compared to the NN 
approach.  

Similarly, the approaches show a performance reduction in 2019 as pumping begins. Both the 
NN and the 3LWQM v1.1 regression overshoot the reduction in clarity seen in the observations; 
however, the NN does not fail the minimum Secchi depth goal of 2.5, as the 3LWQM v1.1 does. 
The 3LWQM v1.1 regression overshoots more strongly, leading to its worse performance overall 
in 2019. The NN predicts an earlier worsening of clarity but otherwise captures the trend better 
than the 3LWQM v1.1 in the later season. The earlier timing of the maximum clarity in the NN 
prediction is likely the result of the 7-day rolling average applied to the series. This will have the 
tendency to shift the timing of extremes when large changes in magnitude occur.  While there is 
limited information to attribute the overshoot behavior, it is hypothesized that the 2019 year is 
the first year where the sediment boundary conditions become important. The 2019 modeled 
TSS timeseries, shown in Reclamation 2021, predicts large amounts of suspended sediment 
while the TSS observations are much lower as the pumps turn on. The pumps act to resuspend 
the sediment already in the water column within the model, causing the sharp performance 
decrease within the NN and 3LWQM v1.1 regression. This goes to the limitations of the model 
used in the annual forecast mode and its sensitivity to the input timeseries. 
 

Table 1. Performance comparison between the 3LWQM v1.1 regression and 3LWQM-TSC v1.0 NN approaches 

 

Model 
MAE [m] 

Calibration 2017 2018 2019 

3LWQM v1.1 0.680 1.012 0.699 1.005 

3LWQM-TSC v1.0 0.542 0.515 0.737 0.756 

 



Table 2. Performance comparison between the 3LWQM v1.1 regression and 3LWQM-TSC v1.0 NN approaches for 
mean Secchi depths in 2017 over the compliance period (7/1/2017-9/11/2017) 

 

Model 
2017 Secchi Depth [m] 

Model Mean Observed 
Mean Average Goal Minimum Goal 

3LWQM v1.1 3.684 
3.503 3.8 2.5 

3LWQM-TSC v1.0 3.433 

 

Table 3. Performance comparison between the 3LWQM v1.1 regression and 3LWQM-TSC v1.0 NN approaches for 
mean Secchi depths in 2018 over the compliance period (7/1/2018-9/11/2018) 

 

Model 
2018 Secchi Depth [m] 

Model Mean Observed 
Mean Average Goal Minimum Goal 

3LWQM v1.1 3.434 
4.155 3.8 2.5 

3LWQM-TSC v1.0 3.368 

 

Table 4. Performance comparison between the 3LWQM v1.1 regression and 3LWQM-TSC v1.0 NN approaches for 
mean Secchi depths in 2019 over the compliance period (7/1/2019-9/11/2019) 

 

Model 
2019 Secchi Depth [m] 

Model Mean Observed 
Mean Average Goal Minimum Goal 

3LWQM v1.1 3.137 
4.391 3.8 2.5 

3LWQM-TSC v1.0 3.706 

 

Conclusions 
 

This work summarized the TSC effort to revise the 3LWQM v1.1 model based on reviewer 
comments and conduct recalibration, with emphasis given to the enhancement of the Secchi 
depth transfer function. This effort resulted in a model which, on the whole, slightly improved 
the ability to predict water quality within Grand Lake. However, inconsistent forecasting 
performance during the validation period continues to show the limitations of the water quality  
model. Resolution of the timing and magnitude of the TSS and chlorophyll peaks remain a 
challenge despite the improved physics and recalibration. While further revision to the initial 
and boundary conditions or adjustments to the calibration may improve model performance, it 
is unclear to what extent these improvements are available a priori during operations planning.  

 



 
Figure 2. Comparison of the NN based Secchi depth forecast with the 3LWQM-TSC v1.0 model to the 3LWQM v1.1 

prediction in 2017. Pump timing and magnitude is shown for reference. The red dots are the mean observed values for 
a given day, with the error bars showing the +/- one standard deviation around the mean if multiple values are 

available for the same day. The shaded blue around the 3LWQM-TSC v1.0 are +/- one standard deviation for the 
residual calibration error after training. 

 

  
Figure 3. Comparison of the NN based Secchi depth forecast with the 3LWQM-TSC v1.0 model to the 3LWQM v1.1 
prediction in 2018. Pump timing and magnitude is shown for reference. The red dots are the mean observed values 
for a given day, with the error bars showing the +/- one standard deviation around the mean if multiple values are 
available for the same day. The shaded blue around the 3LWQM-TSC v1.0 are +/- one standard deviation for the 

residual calibration error after training. 

 



 
Figure 4. Comparison of the NN based Secchi depth forecast with the 3LWQM-TSC v1.0 model to the 3LWQM v1.1 
prediction in 2019. Pump timing and magnitude is shown for reference. The red dots are the mean observed values 
for a given day, with the error bars showing the +/- one standard deviation around the mean if multiple values are 
available for the same day. The shaded blue around the 3LWQM-TSC v1.0 are +/- one standard deviation for the 

residual calibration error after training. 

 

The ability of the NN to compensate for model errors and improve the skill of Secchi depth 
forecasts is due to the robustness of machine learning methods. However, the performance of 
the NN ultimately remains tied to the performance of the W2 model. When the model accuracy 
is low, the NN is unable to provide significant corrections. NN performance could be improved 
with additional Secchi depth measurements to increase correction to the model output. 
However, improving the NN will likely be of diminishing returns as model accuracy becomes 
more limiting compared to the number of Secchi measurements available for NN training.  

The performance of the 3LWQM-TSC v1.0 model indicates modest skill when looking at 
deterministic scenarios. Deterministic simulations are done to analyze specific cases and take 
model output as absolute quantities. However, the model may remain useful in comparing 
relative water quality under various operational scenarios. These cases would run multiple 
models and look at the relative performance among the scenarios. The extent to which this is 
possible is unclear and would require additional investigation. 

In 2020, over 95% of the Willow Creek watershed feeding into the Three Lakes system was 
burned in the East Troublesome fire (US Forest Service, 2020). Wildfires can change the 
hydrology of the basin as they reduce runoff times and retention rates resulting in altered 
sedimentation processes (NRCS, 2016). Given the likely change to the hydrology, sedimentation, 
and nutrient loading within the Three Lakes and surrounding watersheds it will be necessary to 
revisit the TSC W2 model calibration and parameterization of physical processes. 

Adapting either the 3LWQM-TSC v1.0 or the 3LWQM v1.1 model to the post-fire condition 
would be of limited operational benefit at this time. The development of a W2 model requires 
accurate initial and boundary conditions to model a system. However, the 2020 burn introduces 
such uncertainty regarding the initial and boundary conditions that output from the model may 
not meaningfully represent the system. Additionally, skill of a W2 model is determined using a 



calibration/validation procedure. As the burn is relatively new, limited information exists to 
develop a calibration and validation period for a set of new model parameters to represent the 
post burn condition, and existing validation runs have already challenged W2s predictive ability, 
without the drastic changes expected in runoff water quality from the burned areas. 

The rapid hydrologic change anticipated in the post-burn Three Lakes system may require new 
approaches if water quality forecasts are to continue. Given that modeling skill will be limited 
for some time, using a direct, continuous measurement approach would be preferred. This 
should focus on the first order variables that have a direct impact on water quality – flow rate, 
TSS, and chlorophyll – to maximize their impact on clarity forecasts. Coupled with the NN 
based transfer function approach, a measurement based forecast system could provide 
reasonably accurate forecasts with a lead time meaningful to reservoir operations.  
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