
Predicting Reservoir Sedimentation and Capacity 
Loss Across the United States 

Abigail Eckland, Intern, U.S. Bureau of Reclamation, Denver, Colorado, aeckland@usbr.gov 
Melissa Foster, Geomorphologist, U.S. Bureau of Reclamation, Denver, Colorado, 

mfoster@usbr.gov 
Aaron Hurst, Geomorphologist, U.S. Bureau of Reclamation, Denver, Colorado, 

ahurst@usbr.gov 
Irina Overeem, Associate Professor, University of Colorado Boulder, Boulder, Colorado, 

irina.overeem@colorado.edu 
Mussie Beyene, Hydrologic Engineer, U.S. Bureau of Reclamation, Denver, Colorado, 

mbeyene@usbr.gov 
 

Extended Abstract 
Dammed reservoirs across the United States are infilling with sediment, which reduces their 
water storage capacity and can hinder dam operations. However, at the majority of 90,000 
reservoirs across the US, there are no bathymetric surveys to constrain the volume of sediment 
infill and remaining capacity. Our study compiles data relevant to surveyed reservoir sites and 
their upstream drainage basins to detect environmental and anthropogenic controls on 
sedimentation rates, to later predict infill of unsurveyed reservoir sites. We use repeat 
bathymetry data (first and last survey) at 535 sites to compute the reservoir sedimentation rate 
(SR) (Figure 1). SR (m3 yr-1) was calculated as: 

SR =
SV
T

	(1) 

where SV is the measured sediment volume deposited in the reservoir between first and last 
surveys (m3) and T is the time between first and last surveys (years).  

 
Figure 1. Map of 535 sites and their drainage basins, US. Circle colors show reservoir sedimentation rate (SR). 



We are building a multiple linear regression (MLR) model in Python to predict SR at 535 
surveyed reservoirs (Figure 1). Our reservoir sites and study basins are collocated with those 
described in Foster et al. (2023). We investigated environmental parameters that impact basin-
sediment production and transport, such as: drainage area, inflow, relief, climate, and 
vegetation, as well as human impacts though proxies like population (Table 1). At this time, we 
have not reduced this parameter space based on sediment transport process assumptions alone, 
but rather to isolate the parameters that give the most statistical predictability.  

We compiled upstream basin environmental and anthropogenic controls for 50+ first-order 
parameters in ArcGIS Pro. We then identified correlations between individual parameters and 
SR. Several parameters strongly correlated with SR (e.g., sediment-contributing drainage area, 
DAC), while others correlated weakly or not at all (e.g., mean basin temperature and 
precipitation). Figure 2 shows a correlation matrix with 18 of the 50+ predictor variables and 
their R2 correlation with SR and other parameters. Parameter definitions and specifications for 
the selected variables are given in Table 1. 

 
Figure 2. Correlation matrix displaying the coefficient of determination (R2) for sedimentation rate (SR) and 
selected predictor variables for all 535 sites. Color bar represents R2 values. Parameters are defined in Table 1. 



Once we refine potential predictor variables for SR (Figure 2), we will determine which 
parameters to include in our MLR model through statistical analyses. First, to avoid overfitting 
the model, we will remove collinearity between variables. Collinearity is defined as two 
independent variables that correlate via an R2 greater than 0.8. If two or more parameters of a 
similar data type are colinear, we may combine them into a single term using principal 
component analysis (PCA). PCA is a statistical tool used to reduce the complexity of a 
multidimensional dataset by transforming it into fewer dimensions while preserving the 
variation in the data. For example, since many of the elevation parameters are colinear (i.e., 
min, mean, and max elevation, Figure 2), we will explore the appropriateness of PCA to combine 
them into a single term. 

Next, to untangle the best combination of parameters to use in our MLR model, including the 
derived principal components and raw parameter data, we will use the regsubsets function 
within the leaps package in R. This tool performs an exhaustive search over all parameters to 
find a combination that provides the best goodness of fit while minimizing the prediction error.  

Finally, we will develop a MLR model using the sklearn package in Python, using 90% and 10% 
of the data to train and test the model, respectively. We will ensure that each parameter’s 
relationship with SR is significant, with p-values below 0.05. 

We have identified several parameters that predict SR well in a preliminary MLR model, such as 
DAC (Figure 2). DAC accounts for 63% of the proportion of variation (R2) when predicting SR. 
Other parameters that explain a small proportion of the variation include mean reservoir inflow, 
total stream length, and basin population (Figure 2); however, these variables are largely 
controlled by basin size. For example, total stream length is a strong predictor of SR, but 
drainage density (Table 1) is not (Figure 2). We are still investigating how to address the 
influence of drainage area on our parameter data while maintaining the predictability of our 
model. Once we have finalized the parameters, we will sequentially add them to the model 
through stepwise linear regression, using regsubsets to inform the order in which to add the 
parameters.  

We aim to develop our model to effectively predict SR in unsurveyed reservoirs across the US, 
beginning with unsurveyed reservoirs managed by the U.S. Bureau of Reclamation. The 535 
drainage basins used to generate our statistical model range from 3.7 - 2.8 x 106 km2 and span 6 
IECC climate zones (ICC 2021), covering a large variety in basin size, topography, and rainfall 
regimes. Many of the identified controlling parameters are also identified in predictive models 
of fluvial suspended sediment flux to the coastal zone (Syvitski and Milliman 2007). Reservoir 
sedimentation may be impacted more by bedload transport, and we will explore notable 
differences between the respective predictive models. Future work will further examine basin 
runoff, wildfire history, land cover, and regulatory activities as potential additional controlling 
parameters in our MLR model. Our presentation will cover the preliminary results, report 
parameter updates, and provide an estimate of reservoir capacity loss for the nation.  

Table 1. Selected environmental and anthropogenic parameters used to predict reservoir sedimentation rate (SR), 
along with data source, resolution, and approximate dates represented. 

Parameter  Definition Data source Resolution Approx. dates  
SV Sediment volume measured in 

reservoir 
Foster et al. 
(2023) - 1840-2017 



 

References  
Ackerman, K.V., Mixon, D.M., Sundquist, E.T., Stallard, R.F., Schwartz, G.E., and Stewart, D.W. 

2009. “RESIS-II: An Updated Version of the Original Reservoir Sedimentation Survey 
Information System (RESIS) Database,” U.S. Geological Survey. Data accessed March 2023. 

Foster, M., Hurst, A., and Eckland, A. 2023. Developing an Automated Method to Estimate 
Reservoir Sedimentation at ~30,000 Reservoirs across the United States. SEDHYD 2023, St 
Louis, Missouri. 

HydroMet Tools Desktop Application. 2020. U.S. Bureau of Reclamation. 
https://github.com/usbr/HydrometTools. Data accessed March 2023.  

International Code Council (ICC). 2021. Climate Zone Map from International Energy 
Conservation Code (IECC). 

T Years between first and last survey Foster et al. 
(2023) - - 

DAC 
Time-weighted sediment-
contributing drainage area above 
site 

Foster et al. 
(2023) - - 

DAT 
Total drainage area above site used 
to compute basin zonal statistics in 
ArcPro 

Foster et al. 
(2023) - - 

Min., Max, 
Mean., & St. dev. 
elevation; Relief, 
& Mean slope 

Elevation statistics for drainage 
basin, calculated via the zonal 
statistics tool in ArcPro 

USGS 3D 
Elevation 
Program (USGS 
2019) 

30m 2013 

Mean annual 
precip., St. dev. 
annual precip., 
Mean annual 
temp., & St. dev. 
annual temp. 

30-year normal climate statistics for 
drainage basin, calculated via the 
zonal statistics tool in ArcPro 

PRISM (2014) 800m 1991-2020 

Mean NDVI 
Mean of the normalized difference 
vegetation index (NDVI) in drainage 
basin, calculated via the zonal 
statistics tool in ArcPro 

USDA (2014) 1m 2010-2020 

Drainage density 
Sum of the length of NHDPlus High 
Resolution flowlines in drainage 
basin divided by DAT 

USGS (2021) - - 

Total stream 
length 

Sum of the length of NHDPlus High 
Resolution flowlines in drainage 
basin 

USGS (2021) - - 

Basin population Total population in drainage basin 
(P) 

EPA 
EnviroAtlas 
(Pickard et al. 
2015) 

30m 2010 

Lithology 
Lithology (L) value, computed as a 
weighted average over all surficial 
rock types in drainage basin 

Syvitski and 
Milliman 
(2007) 

- - 

Mean reservoir 
inflow 

Mean reservoir inflow (m3 s-1), 
computed from: mean daily1, mean 
monthly2, mean annual3, and 
modeled mean annual reservoir 
inflow4 data 

HydroMet 
(2020)1, 
ResOpsUS 
(Steyaert 
2023)2, RESIS-
II (Ackerman et 
al. 2009)3, 
StreamStats 
(USGS 2016)3, 
USDA (2022)4 

- - 



Parameter-elevation Regressions on Independent Slopes Model (PRISM) Climate Group, 
Oregon State University. 2014. https://prism.oregonstate.edu. Data accessed October 2022. 

Pickard, B.R., Daniel, J., Mehaffey, M., Jackson, L.E., and Neale, A. 2015. “EnviroAtlas: A New 
Geospatial Tool to Foster Ecosystem Services Science and Resource Management,” 
Ecosystem Services, 14:45-55. Data accessed May 2022. 

Steyaert, J.C., Condon, L.E., Turner, W.D., and Voisin, N. 2022. “ResOpsUS, a Dataset of 
Historical Reservoir Operations in the Contiguous United States,” Scientific Data, 9. Data 
accessed March 2023. 

Syvitski, J. and Milliman, J. 2007. “Geology, Geography, and Humans Battle for Dominance 
over the Delivery of Fluvial Sediment to the Coastal Ocean,” Journal of Geology, 115:1-19. 

U.S. Department of Agriculture (USDA) Farm Services Agency. 2014. USA NAIP Imagery: 
Normalized Difference Vegetation Index (NDVI). Data accessed October 2022. 

USDA Forest Service. 2022. Flow Metrics for the Contiguous United States (Historical), online 
at 
https://data.fs.usda.gov/geodata/edw/datasets.php?xmlKeyword=hydro%20flow%20metri
cs. Data accessed March 2023. 

U.S. Geological Survey (USGS). 2016. The StreamStats program, online at 
http://streamstats.usgs.gov. Data accessed March 2023.  

USGS. 2019. 3D Elevation Program 1-Meter Resolution Digital Elevation Model. Data accessed 
October 2022. 

USGS. 2021. National Hydrography Dataset (NHD) Plus High Resolution Version 2.0, online at 
https://www.epa.gov/waterdata/get-nhdplus-national-hydrography-dataset-plus-data. Beta 
version accessed in 2o22. 

 


