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Abstract 
 
Process-based, large-scale (e.g., conterminous United States [CONUS]) hydrologic models have 

struggled to achieve reliable streamflow drought performance in arid regions and for low-flow 

periods. Deep learning has recently seen broad implementation in streamflow prediction and 

forecasting research projects throughout the world with performance often equaling or 

exceeding that of process-based models.  Deep learning models are a possible approach to 

increase the accuracy of streamflow drought predictions and to expand the spatial coverage of 

river locations with available streamflow drought forecasts. 

 

As part of a multi-component Data-Driven Drought Prediction project, the U.S. Geological 

Survey is developing and testing deep learning models for streamflow drought forecasting. In 

this work, we present preliminary results of a deep learning model capable of predicting 

streamflow drought occurrence at ungaged locations for the Colorado River Basin (CRB). A long 

short-term memory (LSTM) neural network model was trained using 40 years (1980-2020) of 

daily streamflow data from 425 streamgages within and surrounding the CRB using static 

watershed attributes as well as meteorological and remotely sensed dynamic forcing inputs. 

Model tests were performed to evaluate model accuracy for now-casting streamflow drought 
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conditions at ungaged locations and for forecasting drought conditions at lead times ranging 

from 0 to 14 days. Nearly all model configurations showed behavioral performance for 

predicting daily streamflow percentiles. Comparisons of LSTM model performance for 

predicting drought using fixed drought thresholds (calculated over all days and years) and 

variable drought thresholds (unique threshold calculated for each day of the year) identify 

differences in model skill between locations with implications for model design. 

 

Introduction 
 

Hydrological drought is a significant and recurring problem facing water resource managers in 
the western United States and beyond. Streamflow droughts, one component of hydrological 
drought, have increased in duration and deficit volume in the western United States in recent 
decades (Hammond and others, 2022). Streamflow drought materializes “as a lack of water in 
the hydrological system, manifesting itself as abnormally low streamflow in rivers and streams” 
(Van Loon, 2015). The different (i) time periods, (ii) time units (ex. daily vs monthly), and (iii) 
approach (standardized index vs threshold method) one can use to define streamflow as being 
abnormally low have led to multiple definitions of streamflow drought depending on location 
and water use sector. The threshold method compares a daily streamflow value to either a fixed 
threshold or a variable threshold, such as one that changes over the course of a year to 
correspond to streamflow seasonality (Van Loon, 2015). The fixed and variable threshold 
methods have been utilized by the U.S. Geological Survey (USGS) to characterize streamflow 
drought throughout the CONUS (Hammond and others, 2022), with the National Drought 
Monitor (droughtmonitor.unl.edu/) using streamflow percentiles based on the variable 
threshold method as one component of assessing drought across the CONUS.  The choice of 
fixed or variable threshold approach to characterize drought leads to differences in timing and 
intensity of defined drought events that can serve diverse stakeholder needs. Choice of drought 
definition has also been suggested to have implications in design of drought early warning 
systems (Sutanto and Van Lanen, 2021).   

 

The Colorado River Basin (CRB) has been the recent focus of significant scientific and public 
attention related to sustained drought conditions.  Persistent streamflow drought in the CRB has 
resulted in large reservoirs reaching record low levels, necessitating new water management 
strategies  (Wheeler and others, 2022). To assist water resource managers in the CRB, multiple 
existing modeling programs including the Bureau of Reclamation Colorado River 24-Month 
Study Projections (www.usbr.gov/lc/region/g4000/riverops/24ms-projections.html), the 
National Weather Service Colorado River Basin Forecast Center’s water supply estimates 
(www.cbrfc.noaa.gov/wsup/graph/west/map/esp_map.html), and the Natural Resource 
Conservation Service water supply estimates 
(www.nrcs.usda.gov/wps/portal/wcc/home/waterSupply/waterSupplyForecasts) all forecast 
water availability at different time scales and locations. However, there remain additional river 
and stream locations in the CRB not served by existing forecast products and a need for models 
specifically focused on streamflow drought early warning. In the Data-Driven Drought 
Prediction project, the USGS is working to build complementary modeling and forecasting 
capacity for hydrological drought in the CRB and is specifically employing machine learning 
(ML) models due to their promising capabilities in hydrological prediction (Shen and others, 
2021). 

 

Machine learning, and in particular deep learning models, have been rapidly adopted in 

hydrologic modeling such as daily streamflow prediction (Shen, 2018). As demonstrated by 

https://droughtmonitor.unl.edu/
https://www.usbr.gov/lc/region/g4000/riverops/24ms-projections.html
https://www.cbrfc.noaa.gov/wsup/graph/west/map/esp_map.html
https://www.nrcs.usda.gov/wps/portal/wcc/home/waterSupply/waterSupplyForecasts
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Kratzert and others (2019a) and additional studies (Feng and others, 2020; Frame and others, 

2021; Nevo and others, 2022), deep learning models have equaled and exceeded performance of 

regional process-based hydrologic models such as WRF-Hydro (i.e., National Water Model) for 

daily streamflow prediction. Regional scale long short-term memory (LSTM) models have been 

a widely adopted deep learning model because they are particularly adept at predicting daily 

streamflow from a combination of dynamic forcing data and static watershed attributes (Klotz 

and others, 2022). However, LSTM models trained to predict daily streamflow have also shown 

inconsistent performance in more arid regions (Feng and others, 2020), regulated watersheds 

(Ouyang and others, 2021), and during low-flow or drought periods (Kratzert and others, 2019b) 

– locations and periods considered generally to be more challenging to model. These conditions 

are also difficult for process-based models to accurately simulate. This research aims to address 

the need for further ML hydrological model development for streamflow drought situations. We 

additionally note that there is to the best of our knowledge no comparable studies on ML models 

being used to directly predict a streamflow percentile and this USGS Data-Driven Drought 

Prediction project seeks to contribute additional research in this area.   

 

In this work, we highlight one component of the larger effort – testing a baseline LSTM model 
for predicting streamflow drought occurrence in ungaged locations within and adjacent to the 
CRB. We compare a model that directly predicts a daily streamflow percentile (with periods 
below a threshold corresponding to drought) to a model trained to predict streamflow, which is 
then used to estimate the percentile and drought conditions. We also compare the performance 
at different forecast time horizons and in a prediction in ungaged basins (PUB) approach. 

 

  
Figure 1.  Example streamflow (USGS, 2022) and derived streamflow percentiles for USGS Streamgage 0929500, 

Yellowstone River near Altonah, UT. The 20% fixed and variable thresholds (dotted lines upper panel) are shown in 

relation to streamflow from the 2012 and 2013 water years. The corresponding streamflow percentiles can be used to 

identify drought events at the 20% severity level for fixed and variable threshold, respectively (shaded areas in lower 

panel). 
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Data & Study Location 
 

The modelling target data for this work were daily streamflow and daily streamflow percentiles 

from 425 streamgages located within the CRB and surrounding area. The 425 streamgages in 

the dataset encompass all streamgages that met two criteria for streamflow records: (a) include 

at least 95% of days in each year and (b) have at least 8 of 10 complete years for all decades (e.g., 

1990–1999) in the period from 1980-2020. The streamflow percentiles and associated 

streamflow drought metrics are available from Simeone (2022). The daily percentiles selected 

for this work were the fixed (long-term) and variable (moving 30-day window) threshold 

percentiles (Figure 1). Drought periods are defined using thresholds of severity including 2%, 

5%, 10%, 20%, and 30%. We selected the 

20% threshold for drought to use in 

evaluating model performance in this 

study to highlight the model 

performance corresponding to moderate 

drought events. Additionally, daily 

streamflow, converted to runoff in 

mm/d, was used as a modeling target. 

Input data variables (features) included 

gridded meteorological data that were 

aggregated to basin averages (Table 1) 

but did not include at-site streamflow as 

this component of the project focused on 

prediction at ungaged time and 

locations. Additionally, 27 static 

watershed attributes available for the 

National Hydrography (NHD) NHDPlus 

Version 2.1 catchments (Wieczorek and 

others, 2018) were used as model inputs 

(Table 2). Model inputs were re-scaled 

prior to being used in modeling by z-

score normalization for input features 

and min-max normalization for the 

target variable. Model input data for the 

streamgages used in this study are 

available from Wieczorek and others 

(2023).  

 

The study area includes the upper and 

lower CRB as well as surrounding areas 

within a 100-mile buffer. The 425 

streamgages (Figure 2) include 205 within the CRB and 225 located in watersheds that drain 

any land within the buffer. The purpose of using data from additional streamgages nearby the 

CRB was to increase the number of streamgages available for training and evaluating models. 

From the 425 streamgages, 26 were withheld as an unbiased test dataset to be used in 

evaluation of future model development. Additionally, 17 streamgages were withheld for lacking 

input data or being located on the mainstem of the Colorado River below Lake Powell. 

Figure 2.  Map of streamgage locations with sufficient 

observations records to have streamflow percentiles available 

for use in the streamflow drought model. Dots with black 

border indicate reference gages in the USGS Hydro-Climatic 

Data Network (HCDN). 
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Table 1.  Gridded meteorology and climatology datasets used as model inputs. Data were aggregated to a 

single basin average value for each day for each streamgage 

Variable Units Source Reference 

Minimum Temperature °C 

gridMET (Abatzoglou, 2013) 

Maximum Temperature °C 

Precipitation mm 

Evapotranspiration (Reference - grass) mm 

Standardized Precipitation 

Evapotranspiration Index (SPEI) 

unitless 

Snow Water Equivalent (SWE) mm NASA 

NSIDC 

(Broxton and others, 2019) 

Soil Moisture (0-10 mm depth) kg/m2 
NASA 

NLDAS 
(Mitchell, 2004) Soil Moisture (10-40 mm depth) kg/m2 

Soil Moisture (40 – 100 mm depth) kg/m2 

 
Table 2.  Static watershed attributes used as inputs to the regional deep learning models. 

(Wieczorek and others, 2018) 

Attribute Description Attribute Description 

SqKm Drainage Area in square kilometers MIRAD_2012 % of watershed in irrigated 

agriculture (2012) 

ELEV_MEAN Mean elevation FRESHWATER_WD Total freshwater 

withdrawals 

ELEV_MAX Maximum elevation SANDAVE Average % of sand in soil 

MINWD6190 Average of minimum monthly 

number of days of measurable 

precipitation (1961-1990) 

CLAYAVE Average % of clay in soil 

MAXWD6190 Average of maximum monthly 

number of days of measurable 

precipitation (1961-1990) 

SILTAVE Average % of silt in soil 

RF7100  Mean annual average for the Rainfall 

and Runoff factor (1971-2000) 

HGA  Percentage of Hydrologic 

Group A soil 

ARTIFICIAL Percentage of all flowline reach that 

is an artificial reach 

HGB  Percentage of Hydrologic 

Group B soil 

AET Mean annual evapotranspiration HGC  Percentage of Hydrologic 

Group C soil 

RH Average relative humidity HGD  Percentage of Hydrologic 

Group D soil 

 WB5100_ANN  Average annual runoff (1951-2000) ROCKDEP Average range in total soil 

thickness 

MAXP6190 Maximum average annual 

precipitation (1961-1990) 

 CONTACT  Subsurface flow contact 

time index 

CWD Average number of consecutive days 

with measurable precipitation 

STREAM_SLOPE Average flowline slope 

RECHG Mean annual natural ground-water 

recharge 

TOTAL_ROAD_DENS  Density of all road types 

BFI Base flow index NLCD19_FOREST 2019 watershed % of land 

use in forest 

TWI Topographic wetness index NLCD19_WETLAND 2019 watershed % of land 

use in wetlands 

EWT Average depth to water table DI_EROM reservoir storage intensity 

in units of days 

SATOF Percentage of Dunne overland flow 

as a percent of total flow 

DI_PMC degree of regulation 
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Methods 
Deep Learning Model 
 

Separate LSTM deep learning models were trained and tested for multiple different modeling 
target variables, forecast horizons, and an ungaged application. The LSTM model is a type of 
recurrent neural network that is designed to learn from sequential data (e.g., natural language, 
time series). The Python open source package NeuralHydrology (Kratzert and others, 2022) 
was used for all model training. NeuralHydrology is a deep learning package based on the 
PyTorch machine learning framework and features an LSTM model implementation that can be 
trained on GPU computing instances. Details on the LSTM architecture and implementation can 
be found in Kratzert and others (2018). We used the USGS Cloud Hosting Solutions (CHS) 
implementation of Amazon Web Services Sagemaker computing platform for model training. 
 

LSTM models, like other deep learning models, have multiple settings (commonly referred to as 
hyperparameters) that can be tuned for optimal performance. In this preliminary work, we have 
not performed an exhaustive hyperparameter search, but instead adopted hyperparameter 
settings based on previous studies of daily streamflow prediction (e.g., Kratzert and others, 
2019a). For all models, a sequence length of 270 days was used with a single output prediction 
(i.e., the model uses the previous 270 days of inputs to make a single prediction at time t, t+7, or 
t+14). Additional LSTM hyperparameters were set as follows: 192 hidden units; single LSTM 
layer; 0.4 dropout before output layer; 0.1 standard deviation of normalized target data added 
noise (to reduce overfitting); and learning rate schedule of 0: 1e-3, 1: 5e-4, 5: 1e-4, 10-: 5e-5; and 
batch size of 512. Models were trained for 30 epochs, which was found to be sufficient for model 
convergence. The training (loss) function used differed according to the target variable with 
average Nash-Sutcliffe efficiency (NSE) used for daily streamflow (Kratzert and others, 2019b), 
and symmetric mean absolute percentage error (SMAPE) (Smyl, 2017) used for fixed and 
variable percentiles.  
 

Experiment Design 
 

The project design consists of training individual LSTM models for each combination of model 
target variable, forecast horizon, and training/validation data configuration (Table 3). For all 
models, training data consisted of the period from 01-Oct-1981 to 31-Mar-2005 and validation 
period of 01-Apr-2005 to 31-Mar-2014. It is typical in machine learning modeling to have a 
three-way train/validation/test split of data (Subramanian, 2018). As described earlier, a set of 
26 streamgages were set aside for future use as a test data partition, along with the time period 
from 01-Apr-2014 to 31-Mar-2020. Therefore, in this preliminary work, the train and validation 
data partitions can be seen as equivalent to a simple training and testing split, however, for 
consistency within the overall project, we will continue to refer to them as training and 
validation here. 
 

Models trained using all streamgages were trained using data from all 384 streamgages and then 
validated over the same 384 gages and represent a model scenario of making predictions at 
locations where past observations are available (i.e., ungaged in time). For the prediction in 
ungaged basins (PUB) models, spatial cross-validation was used where streamgages were 
assigned into geospatial groups based on if their drainage areas overlapped by 50% or more. 
Geospatial groups were then randomly assigned into k = 10 cross-validation folds. The PUB 
LSTM models are trained on all data from k-1 folds. This is repeated k times resulting in out-of-
sample (ungaged) predictions for all 384 streamgages. 
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Table 3.  Experiment setup for LSTM model runs 

 

Model Run Modeling Target 

Variable 

Forecast 

Horizon 

Streamgages used in model 

validation 

Streamflow-0d Daily Streamflow (mm/d) 0 days All streamgages 

Streamflow-7d Daily Streamflow (mm/d) 7 days All streamgages 

Streamflow-14d Daily Streamflow (mm/d) 14 days All streamgages 

PUB-Streamflow-0d Daily Streamflow (mm/d) 0 days Streamgages withheld in training 

Fixed-0d Fixed Percentile 0 days All streamgages 

Fixed-7d Fixed Percentile 7 days All streamgages 

Fixed-14d Fixed Percentile 14 days All streamgages 

Variable-0d Variable Percentile 0 days All streamgages 

Variable-7d Variable Percentile 7 days All streamgages 

Variable-14d Variable Percentile 14 days All streamgages 

PUB-FIX-0d Fixed Percentile 0 days Streamgages withheld in training 

PUB-VAR-0d Variable Percentile 0 days Streamgages withheld in training 

 

To assess the effectiveness of using a model trained on daily streamflow for predicting drought, 
we converted the daily streamflow to an estimated streamflow percentile using linear 
interpolation. The transformed model predictions are then able to be evaluated using the same 
metrics as models directly trained on the streamflow percentile data. The transformed streamflow 
(Q) models are identified as Q-to-Fixed-0d and Q-to-Variable-0d. 
 

Evaluation 
 
Model predictions were evaluated using three performance metrics that capture the ability of the 
model to simulate the overall time series of streamflow percentiles as well as the robustness of 
correctly predicting drought occurrence. Regression performance metrics of overall percentile 
prediction utilized were NSE and Kling Gupta Efficiency (KGE) (see Knoben and others, 2019). 
For evaluating accuracy of predictions of streamflow drought conditions, we classified drought 
and non-drought periods for both modeled and observed time series using the 20th percentile 
threshold (i.e., moderate to exceptional drought levels combined), then used Cohen’s kappa to 
quantify how well the modeled predictions of drought periods match observations. Cohen’s 
kappa is a measure of inter-rater reliability (Landis and Koch, 1977), in which the agreement 
between two raters, here observed and modeled drought occurrence, can be determined. 
Cohen’s kappa values range between -1 and 1 with values below 0 indicating no agreement and 1 
being perfect agreement. Fixed model predictions were evaluated on fixed threshold drought 
periods, and variable model predictions were evaluated on variable threshold drought periods. 
Each metric was calculated on a per streamgage basis and overall minimum, median, and 
maximum values for each model run were tabulated. 

Results 
 

LSTM Model Performance for Predicting Daily Streamflow 
 
The LSTM models trained on daily streamflow showed acceptable predictive ability at all lead 
times (0, 7, and 14 days) with median NSE scores ranging from 0.47 to 0.69 and KGE scores 
ranging from 0.60 to 0.69 (Figure 3 and Table 4). For daily streamflow prediction, KGE scores 
above 0.3 and NSE scores above 0.5 can be considered “behavioral” and show meaningful 
modeling capability (Knoben and others, 2019). There are several sites where the LSTM model 
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performance is worse than assuming the mean flow at that site as evidenced by a non-trivial 
number of KGE values below -0.41 (or NSE below 0). Given that many streamgages used in model 
evaluation have moderate to significant flow regulation, model predictions at some streamgage 
locations are inaccurate.  

 

Table 4.  Summary statistics for model performance during validation period for models trained using daily 

streamflow (mm/day) as the target variable. 

 

 KGE NSE 

Model Min Median Max Min Median Max 

Streamflow-0d -10.88 0.69 0.96 -35.83 0.69 0.96 

Streamflow-7d -30.93 0.61 0.94 -9.00 0.60 0.90 

Streamflow-14d -29.20 0.60 0.92 -2.84 0.53 0.89 

PUB-Streamflow-0d -51.21 0.42 0.97 -217.67 0.47 0.94 

 

 
Figure 3.  Model performance during validation period for models trained using daily streamflow (mm/day) as the 

target variable. The PUB (prediction in ungaged basins) model indicates model spatial cross-validation is done to 

provide predictions at locations not used at all in model training.  Note, outlier points below -3.0 values are clipped to 

visualize quartiles more clearly. 
 

LSTM Model Performance for Predicting Streamflow Percentiles and 

Drought Occurrence 
 
LSTM models trained directly on streamflow percentiles showed behavioral model performance 
across lead times and threshold type (Table 5 and Figures 4 and 5). Fixed threshold LSTM models 
had accuracy (median KGE 0.67 to 0.72) very similar to daily streamflow models (median KGE 
0.60 to 0.69) and higher than variable threshold models (median KGE 0.37 to 0.51). Given that 
fixed threshold percentiles are a re-scaled daily streamflow, performance would be expected to be 
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on par with daily streamflow prediction. We also observed greater loss in predictive accuracy at 
longer lead times for variable percentiles than for fixed percentiles (Table 5, Figures 4 to 6) 
 

Table 5.  Summary statistics for model performance during validation period for predicting daily 
streamflow percentiles as the target variable. 

 

 NSE KGE 

Model Min Median Max Min  Median Max 

Fixed-0d -0.92 0.62 0.96 -1.64 0.72 0.97 

Fixed-7d -0.90 0.53 0.92 -1.54 0.67 0.95 

Fixed-14d -0.89 0.52 0.92 -1.58 0.67 0.95 

Variable-0d -1.17 0.24 0.77 -1.69 0.51 0.85 

Variable-7d -1.05 0.11 0.60 -1.68 0.43 0.77 

Variable-14d -0.97 0.01 0.63 -1.86 0.37 0.78 

Q to Fixed-0d  -2.23 0.48 0.93 -2.36 0.52 0.96 

Q to Variable-0d  -1.33 0.04 0.72 -2.40 0.29 0.92 

PUB-Fixed-7d -1.65 0.40 0.92 -1.62 0.58 0.95 

PUB-Variable-7d -1.09 -0.17 0.69 -1.23 0.46 0.81 

 

Figure 4.  Model performance during validation period for models trained using fixed threshold daily streamflow 
percentiles as the target variable.  
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Figure 5.  Model performance during validation period for models trained using variable threshold daily streamflow 
percentiles as the target variable. 

 

Predicted streamflow percentiles from the LSTM models trained directly on percentiles (fixed and 
variable threshold) were also compared to percentiles estimated from the daily streamflow 
predictions (models in Table 5 and Figure 6) at the 0-day lead time. Estimated percentiles from 
the daily streamflow models had lower accuracy than models trained directly on percentiles with 
median KGE of 0.52 and 0.29, for variable and fixed thresholds respectively. Results show that 
training the models on the target of interest (streamflow percentiles) yields better performing 
models than training on a variable that then needs post processing.  

 

Figure 6.  Model performance at the 0-day lead time during validation period for models trained directly using 
streamflow percentiles compared to predictions calculated from daily streamflow predictions. 

Percentile model performance, for fixed and variable drought thresholds (i.e., a predicted and 
observed streamflow percentile are both less than 20%), was fair with accuracy measured by 
median values of Cohen’s kappa between 0.18 and 0.46 (Table 6 and Figures 4 and 5). Like the 
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prediction of percentiles generally, the drought prediction for fixed percentile models was more 
accurate than for variable percentile models.  Additionally, for both fixed and variable thresholds, 
the modeling of percentiles directly resulted in more accurate predictions compared to estimates 
derived from daily streamflow predictions (Figure 6 and Table 6).   

 

Table 6.  Summary statistics for model drought occurrence prediction accuracy at the 20th 
percentile threshold.  

 Cohen’s kappa 

Model Min Median Max 

Fixed-0d -0.44 0.46 0.83 

Fixed-7d -0.38 0.41 0.76 

Fixed-14d -0.50 0.40 0.76 

Variable-0d -0.49 0.29 0.73 

Variable-7d -0.47 0.25 0.70 

Variable-14d -0.43 0.18 0.70 

Q to Fixed-0d  -0.24 0.18 0.74 

Q to Variable-0d -0.14 0.17 0.75 

PUB-Fixed-0d -0.48 0.30 0.79 

PUB-Variable-0d -0.33 0.24 0.78 

 

Evaluation of Model Performance for Prediction in Ungaged Basins 

(PUB) Task 

Evaluating the predictive capacity of the LSTM models in a true ungaged scenario, where no data 
from the streamgages considered in validation were used in training, the model performance 
expectedly decreased for both variable and fixed thresholds (Figure 7 and Table 6) but was still 
behavioral. A greater decrease in accuracy was observed for the fixed threshold percentile models 
compared to variable threshold.  

 

Figure 7.  Model performance at the 0-day lead time during validation period for models trained directly on 

streamflow percentiles. The PUB (prediction in ungaged basins) model indicates model spatial cross-validation is 

done to provide predictions at locations and is not used at all in model training.   
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Discussion 
 

LSTM Modeling of Daily Streamflow in the Colorado River Basin 

Region 
 

Error metrics for daily streamflow prediction in this work are comparable to existing national-
scale studies on daily streamflow prediction using LSTM models. Several LSTM daily 
streamflow studies have been undertaken using the CAMELS basin dataset (Addor and others, 
2017) of reference hydrological basins such as Xie and others (2021) and Frame and others 
(2021) that reported a median KGE of 0.75 and 0.74, respectively (equivalent to the Streamflow-
0d model test in this work) across 531 basins in the CONUS. Given the preliminary results 
presented here are for a model that has not gone through a hyperparameter model tuning 
experiment yet, these results show promise for the compiled dataset to predict daily streamflow 
magnitudes across the CRB region. Additionally, the comparability of performance given that 
the 384 streamgages used in this study include basins with moderate to substantial flow 
regulation and more arid climate, whereas the CAMELS basins are minimally altered and 
include humid climate basins, indicates that there is potential for application of LSTM models to 
streamflow drought prediction in the CRB. However, the results for the PUB model evaluations 
highlight the challenge in building a reliable ungaged streamflow prediction model in the 
climatologically diverse and anthropogenically altered CRB region. Kratzert and others (2019a) 
reported a PUB LSTM median NSE of 0.69 across 531 CAMELS basins, which is higher than the 
results achieved here (median NSE of 0.47). Our work is more comparable to Ouyang and others 
(2021) who performed several experiments testing PUB prediction using different subsets of 
streamgages (with varying degrees of flow regulation) and reported highly variable median NSE 
values (depending on streamgage subsets used in training and testing). This highlights the effect 
that flow regulation has on streamflow predictability; complimentary work could explore how 
flow regulation and watershed attributes correlate to LSTM model performance. 

 

LSTM Modeling of Streamflow Percentiles 
 

Streamflow drought is dependent on the definition selected (e.g., a fixed or variable threshold) 

and that definition has a noticeable effect on LSTM models predictive capacity. Fixed thresholds 

were considerably easier to predict than variable thresholds using gridded meteorology and 

watershed attributes. The difficulty in predicting variable threshold percentiles could be 

partially attributed to the inputs (i.e. observation values) and the target data being transformed 

to a deviation from a seasonally adjusted baseline. Investing the transformation of input 

variables and how it affects model performance could be an area for further research.. 

Streamflow drought is directly measured based on streamflow magnitudes, and one benefit of 

training a model on streamflow is that a single LSTM model can then be used to estimate a 

variety of streamflow drought calculations by post-processing the modeled streamflow. 

However, in all cases, our results showed that LSTM models trained directly on streamflow 

percentiles improved predictive ability. It is likely that the processing of streamflow into 

percentiles, which necessarily re-scales streamflow, results in improved performance of 

estimating lower percentile values. One drawback to this approach is that streamgages used for 

training must have sufficient records available to estimate percentiles reliably. In our work, 

streamgages must have been operational for at least 40 years which resulted in data from 

numerous gaging stations being excluded from use.  
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Conclusions 
 

The LSTM models developed in this work show promise for ML-based prediction of streamflow 

drought using gridded meteorology and remote sensing data as inputs. We found when using a 

standard LSTM model with typical loss functions (e.g., NSE) a model trained directly on 

calculated streamflow percentiles shows greater accuracy in predicting percentiles and drought 

occurrence relative to models trained on streamflow that is then post-processed. Fixed 

percentile drought periods were more accurately predicted than variable thresholds, likely due 

to more predictable seasonal patterns. Preliminary model performance for drought prediction 

was generally found to be fair to moderate based on Cohen’s Kappa metric, which highlights that 

streamflow drought prediction is a generally challenging prediction problem, especially in the 

CRB region. However, model (hyperparameter) tuning, loss function optimization for low-

flow/percentile conditions, and use of model ensembles are likely to result in improvements that 

support the potential for this modeling approach. Additionally, the use of more remotely sensed 

data inputs, forecasted weather data, and/or using nearby streamflow and reservoir information 

are also likely to improve predictive performance. A USGS data-driven drought prediction 

project is implementing these modeling improvements to further build early warning capacity 

for streamflow drought within the Colorado River Basin region. 
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