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Introduction 
 

The current reservoir and dam infrastructure across the contiguous US provides water supply 
and hydroelectricity to localities, mitigates flood damage, supplies navigation, and provides 
recreational opportunities for communities. Maintenance of the collective system is pertinent to 
continued societal function. However, reservoirs throughout the nation are filling with 
sediment, which diminishes their life cycle and reduces their effectiveness, while increasing the 
cost of maintenance (Sholtes et al., 2018). Small-capacity reservoirs in high sediment yield 
regions are geologically prone to rapid loss of storage capacity and are at risk of sedimentation 
complications. The costs of remediating the accumulated sediment in these structures are 
exceedingly expensive, with dam removal providing the greatest expense in dam 
decommissioning (U.S. Bureau of Reclamation, 2006). 

 
The USACE has implemented the Enhancing Reservoir Sedimentation Information for Climate 

Preparedness and Resilience (RSI) program to monitor reservoir aggradation and dam 

operation suitability for water-resource management. This unprecedented dataset contains 

information on approximately 400 dams (excluding navigation structures). However, given that 

over 90,000 dams exist in the US, the RSI dataset represents less than 1% of the US dams. Thus, 

there is a critical need to develop methods for estimating reservoir sedimentation at 

unmonitored sites. Existing reservoir sedimentation modeling methods have been unable to 

analyze large temporal or spatially scaled patterns of sedimentation, due to a lack of available 

data required for modeling. Previous sedimentation models utilized smaller and more local 

temporal and spatial scales that required daily to yearly hydrologic records, bathymetric 

reservoir details, and grain-size distribution of sediment (Ackers, 1988; Lajczak, 1996; Tarela 

and Menendez, 1999; Sundborg, 1992; Rowan et al., 2001). The RSI system provides reservoir 

data characterized by spatially diverse reservoirs across the contiguous United States, with some 

collection records spanning at least 100 years. 
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Additionally, due to the complex nonlinear behavior of natural sedimentation processes 

influenced by differing hydraulic flow factors, the utilization of machine learning introduces an 

ideal tool for constructing reservoir sedimentation estimations at unmonitored sites. (Abrahart 

et al., 2001; Zounemat-Kermani et al., 2019; Zounemat-Kermani et al., 2020). Thus, the 

objective of this research was to provide a tool for estimating reservoir sedimentation quantities 

using machine learning methodologies on the RSI system and other remotely gathered data. 

This tool could provide the USACE with a technique to monitor reservoir sedimentation and 

enable informed remediation efforts for RSI system reservoirs. 

 

Methods 
 
The USACE RSI data was combined with supplementary reservoir information corresponding to 
hydrologic and sedimentation processes to form a composite dataset utilized in this study. The 
supplementary dataset was compiled through the use of tools, such as GIS, MATLAB, and 
Pythonic Application Programming Interfaces (APIs). These APIs included Google Earth Engine 
and ArcGIS. Additionally, these tools exclusively use publicly available data, such as digital 
elevation models (DEMs), the National Landcover Database (NLD), USGS soil maps, monthly 
precipitation maps, the National Inventory of Dams (NID), as well as the Environmental 
Protection Agency’s (EPA) ecoregion classification map, and the International Energy 
Conservation Code’s (IECC) climate zone classification map. Table 1 distinguishes the types of 
parameters compiled through the use of these tools and public resources. 
 

Table 1. Supplemental Data Compiled for the RSI System  

 
 
A data anomaly detection was performed to reduce inclusion of erroneous data within the 
composite dataset. This included anomaly removals utilizing Autonomous Anomaly Detection 
(AAD) (Angelov et al., 2016; Gu and Angelov, 2017), which flagged 18 records corresponding to 
15 reservoirs, and the Kolmogorov-Smirnov and Efron (KSE) outlier detection method (Jirachan 
and Priomsopa, 2015), which flagged 15 records corresponding to 10 reservoirs. Removal of 
anomalous data within the dataset used for model development varied by model based on 
individual performance, with the OLS model performing best with the full dataset and the 
machine learning models performing best with the removal of the KSE-identified anomalous 

Fixed Watershed 

Param eters

T im e-Dependent Watershed 

Param eters
Reservoir Param eters

Basin Area Total Upstream Normal Storage Avg. Time Since Dam Completion

Mean Basin Slope Total Upstream Max. Storage Initial Trap Efficiency

Basin Relief Total Upstream Dam Height Initial Capacity

Hy draulic Length Mean Monthly  Precipitation

Channel Slope Cumulative Precipitation

Mean Elevation Duration of time between Survey s

Max. Elevation Maximum Monthly  Precipitation

Min. Elevation Normalized Max. Monthly  Precipitation

Elevation Standard Deviation

Composite Curve Number

Percent Forested Area

Mean Basin Latitude

Mean Basin Longitude

EPA Ecoregions Zones

IECC Climate Zones
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data. A logarithmic transformation, as well as standard scaling or a minimum-maximum scaling 
of the datasets, was performed, depending on which anomalous removal method was 
conducted, to diminish the bias and skew of the variables’ distribution. The following provides 
the equation for the log transformation: 

  𝒙𝒍𝒊
= 𝐬𝐠𝐧[𝐥𝐧(|𝒙𝒊| + 𝟏)]  Eq. (1) 

where 𝑥𝑖 is the original data value; 𝑥𝑙𝑖
 is the log-transformed value; 𝑖 is the number of 

observations; and the sgn function multiplies the value by either a value of one if 𝑥𝑖 is a positive 
value or a value of negative one if 𝑥𝑖 is a negative value. Cox et al. (2022) provide additional 
details on the transformation and scaling of the variables. 

 
A feature importance analysis was then conducted to analyze the sensitivity of variables in 
hindering statistical model performance. This resulted in the creation of a refined dataset with 
colinear features removed, known as the recursive feature eliminated (RFE) composite dataset. 
The RFE composite dataset was used to evaluate the modeled prediction of capacity loss within 
a reservoir, depending on the given predictor variables within the dataset. The data was 
examined in each iteration of a statistical or machine learning modeling method. For all models 
analyzed, a 70%/30% split of the datasets was applied for the training and testing of the models, 
respectively.  
 
The first statistical analysis method was the Ordinary Least Squares (OLS) multilinear 
regression model. For this analysis, the full RFE dataset including anomalies, was utilized. The 
second analysis consisted of four supervised machine learning regression models: Support 
Vector Machine (SVM), Random Forest (RF), Decision Tree (DT), and Partial Least Squares 
(PLS). The third analysis used deep neural network (DNN) models. These models were modeled 
on the RFE dataset with the KSE anomalies removed. In the DNN model survey, four base DNN 
architectures were analyzed. For each DNN architecture, the hidden layer structure either 
progressively increased its decision node complexity from its initial input, or it progressively 
decreased. For each model studied, error and accuracy measures were analyzed with graphs of 
predicted versus observed measures of capacity loss, which is the change in capacity between 
two consecutive surveys. 
 

Results and Conclusions 
 
The recursive feature elimination process generated a dataset that contained twelve predictor 
variables, that were deemed most influential to providing modeling accuracy based on recursive 
model refinement through the use of a Random Forest regression model. Table 2 provides a list 
of the variables and their ranked order of significance.  
 
For the OLS multilinear regression model, a training/testing analysis, as well as a fully 
calibrated OLS analysis were performed using the full dataset. This was done to provide the 
overall best-fit equation shown in Equation 2: 
 

𝒚𝑶𝑳𝑺𝒍
= −𝟏𝟎. 𝟑 + 𝟎. 𝟓𝟓𝟑𝒙𝒍𝟏

+ 𝟎. 𝟒𝟕𝟔𝒙𝒍𝟐
+ 𝟎. 𝟑𝟖𝟑𝒙𝒍𝟑

 

        −𝟎. 𝟏𝟖𝟏𝒙𝒍𝟒
+ 𝟎. 𝟓𝟔𝟏𝒙𝒍𝟓

+ 𝟏. 𝟔𝟑𝒙𝒍𝟔
 

 −𝟎. 𝟎𝟒𝟗𝟒 𝒙𝒍𝟕
+ 𝟎. 𝟎𝟐𝟓𝟎𝒙𝒍𝟖

− 𝟎. 𝟎𝟐𝟔𝟕𝒙𝒍𝟗
   

                   +𝟏. 𝟗𝟏𝒙𝒍𝟏𝟎
+ 𝟎. 𝟏𝟗𝟐𝒙𝒍𝟏𝟏

+ 𝟎. 𝟎𝟓𝟖𝟗𝒙𝒍𝟏𝟐
 Eq. (2) 
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where 𝑦𝑂𝐿𝑆𝑙
 is the log-transformed predicted capacity; 𝑥𝑙𝑝

 are the log-transformed predictor 

variables; and the numeric subscript 𝑝 on the 𝑥𝑙 terms denotes the variable index (Table 2). The 
calibrated OLS had an R2 value of 0.40 and a mean absolute percentage error (MAPE) of 195%. 
Based on the model performance interpretation guidelines presented in Ayele et al., 2017, this 
OLS model performance is considered unsatisfactory (i.e., R2 < 0.50). Table 2 defines the twelve 
predictor variables with their associated indices and coefficients. The unscaled OLS coefficients 
cannot be compared directly to determine the relative influence of each term. Therefore, 
standard scaling was used to further analyze the magnitude of influence each predictor variable 
had on the target variable (capacity loss) within the OLS equation. 
 

Table 2. Recursive Feature Eliminated (RFE) ranked dataset variables.  

Index Variable Units 

Calibrated 
Standard 

Scaled Data 
- OLS 

Coefficients 

Calibrated 
Unscaled Data - 

OLS 
Coefficients 

1 Basin Area mi2 1.42 0.553 

2 Initial Capacity acre-ft 1.03 0.476 

3 Cumulative Precipitation in 0.323 0.383 

4 Hydraulic Length ft -0.259 -0.181 

5 Max Monthly Precipitation in 0.234 0.561 

6 Curve Number n/a 0.144 1.63 

7 Total Upstream Dam Height ft -0.119 -0.0494 

8 Total Upstream Normal Storage acre-ft 0.100 0.0250 

9 Basin Relief ft -0.0369 -0.0267 

10 Channel Slope ft/ft 0.0226 1.91 

11 Average Basin Latitude ° 0.0197 0.192 

12 Mean Monthly Precipitation in/mo. 0.0158 0.0589 

 
Similar to the evaluation conducted on the OLS model, the best supervised machine learning 
model and DNN models were identified based on the highest R2 values present in the 
untransformed training and testing datasets. A comparison between the supervised machine 
learning methods showed that the RFR had the highest accuracy in terms of predictive 
performance, when validated and calibrated on the respective data. With a training set R2 of 
0.61 and a testing set R2 of 0.57, this model showed precision in terms of model fitness, when 
compared to the predicted versus observed values of capacity loss. Figure 1 shows the graphical 
testing results for this model, as well as the comparison to the testing performance of the other 
models studied. Notably, for the RFR model, there was a significant increase in MAPE on the 
testing dataset’s forecasting accuracy. This signifies that the model’s training results were 
overestimating the model’s performance, regardless of the relatively high R2 value present on 
the testing dataset. 
 
In analyzing the DNNs, the complex DNNs performed significantly better in terms of accuracy 
based on the MAPE and R2 values. The DNNPI1 was identified as the best DNN model variation 
based on maximizing R2 and minimizing the relative root mean squared error (RRMSE). The 
DNNPI1 had training and testing R2 values of 0.83 and 0.70, respectively. This makes the DNNPI1

 

the best fitting model in terms of performance. The RRMSE values of the DNNPI1 were the 
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lowest RRMSE values compared across all analyzed machine learning models. However, the 
MAPE and RRMSE values showed a relatively large percentage increase between training and 
testing, meaning there may be underlying forecasting inaccuracies.  
 

 
Figure 1. Comparison of Supervised ML and DNN predictive models 

 

The model recommended for capacity loss prediction is a calibrated DNNPI1 model. The 

calibrated DNNPI1 was established through training the original, best-performing DNNPI1 model 

on the entire RFE dataset. This was conducted to overcome potential inaccuracies associated 

with the relatively smaller number of data points available, which is the case with the current 

RSI dataset. For this calibrated model, the R2 increased to 0.81 and the MAPE value decreased 

to 38%. This shows a significant improvement in terms of forecasting accuracy, compared to all 

other models. Figure 2 illustrates the observed versus predicted capacity loss values for the 

calibrated DNNPI1. Thus, this modeling method is interpreted as the most promising tool for the 

identification of vulnerable reservoirs within the RSI system. 
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Figure 2. Observed versus predicted capacity loss values for the recommended machine learning model (calibrated 

DNNPI1). 
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