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Extended Abstract 
 

Understanding fluvial sediment transport is critical to addressing many environmental concerns 

such as exacerbated flooding, degradation of aquatic habitat, excess nutrients, and the economic 

challenges of restoring aquatic systems. However, fluvial sediment transport is difficult to 

understand because of the multitude of factors controlling the potential sources, delivery, 

mechanics, and storage of sediment in aquatic systems. While physical fluvial sediment samples 

are an integral part of developing solutions for these environmental concerns, samples cannot 

be collected at every river and time of interest. Therefore, accurate and cost-effective estimates 

of sediment loading are needed to manage riverine sediment transport at a multitude of scales 

(Ellison et al. 2016); also needed are methods to estimate sediment transport at sites where little 

or no physical samples have been collected (Gray & Simões 2008). The application of machine 

learning (ML) approaches to estimate sediment transport has grown over the past two decades 

(Afan et al. 2016). ML used in sediment transport research has shown multiple benefits over 

traditional approaches, such as increased prediction accuracy, the ability to learn complex linear 

and non-linear relations amongst the dataset and providing the ability to interpret these 

complex relations with important features used in the model (Cisty et al. 2021; Francke et al. 

2008; Khan et al. 2021; Zounemat-Kermani et al. 2020; Cutler et al. 2007). 

 

The main objectives of this study (Lund et al. 2022) were: 

1) Organize representative physical sediment samples, streamflow, and publicly 

available geospatial datasets that describe watershed, catchment, near-channel, and 

channel features in Minnesota 

2) Engineer new features from streamflow data to better account for bankfull 

streamflow and rising or falling hydrographs 

3) Train extreme gradient boosting (XGBoost) ML models to provide estimates of total                    

sediment transport at stream locations where little or no physical samples have been                

collected but streamflow and geospatial data is available (Chen & Guestrin 2016) 

4) Evaluate the final ML model against the more simplified streamflow control ML 

model to show prediction accuracy gained by feature engineering 

5) Compare cumulative loads from in-situ sediment surrogate models to ML models 

that were trained without any data from the surrogate site, highlighting the ability to 
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transfer knowledge of sediment transport process from sites with physical samples to 

sites without 

6) Interpret the final ML models important features with Shapley additive explanations 

(SHAP) values to assess what the ML model learned and how predictions were made, 

while making connections to known processes controlling fluvial sediment transport 

(Lundberg & Lee 2017; Molnar 2019) 

 

Separate XGBoost ML models were developed and trained to predict suspended-sediment 

concentration (SSC) and bedload (BL) from sampling data collected in Minnesota by the U.S. 

Geological Survey (USGS). A total of 1,382 SSC samples from 56 sites and 638 bedload samples 

from 43 sites were included in the final dataset (Lund & Groten 2022). Approximately 400 

watershed (full upstream area), catchment (nearby landscape), near-channel, channel, and 

streamflow features were retrieved or developed from multiple sources, reduced to 

approximately 30 uncorrelated features, and used in the final ML models. The results from 

Table 1 indicate suspended sediment and bedload final ML models explain 69% and 78% 

percent of the variance in the respected datasets.  

 
Table 1. Goodness-of-fit results from comparison of streamflow control machine learning models to final machine 

learning models [BL, bedload; bR2, bias correlation coefficient; NSE, Nash-Sutcliffe efficiency; RMSE, root mean 

squared error; SSC, suspended-sediment concentration] (Lund et al. 2022). 

 

 
 

Normalizing streamflow by the 2-year recurrence interval (RI) helped to constrain the 

variability in streamflow across sites of varying sizes and indicates when streamflow was below, 

near, or above bankfull. Calculating the slope of this new dimensionless hydrograph in relation 

to 24 hours before and after the sample was collected quantified if the sample was collected 

during stable, slowly/quickly rising, or falling streamflow. These feature engineering steps to 

normalize streamflow and calculate the slope of the hydrograph were found to increase model 

variance by 10% for both the SSC and bedload models when compared to streamflow control 

models that used streamflow in cubic feet per second and a categorical value of 1 for rising and 0 

for falling hydrographs.  

 

By comparing ML model outputs to in-situ sediment surrogate model outputs at sites that were 

not included in the training or testing of the ML model provided an opportunity to validate the 

ML modeling approach. The site-specific ML cumulative daily suspended-sediment loads (SSLs) 

were within the sediment surrogates 90% prediction intervals at all four sites.  

 

 



 
 

Figure 1. Selected Shapley additive explanation (SHAP) dependence plots from final suspended-sediment 

concentration (SSC) machine learning model. SHAP values on the y-axis and features observed values on the x-axis, 

each subplot has different scales. A positive SHAP value indicates the feature observation had a higher impact on 

predicting a target value greater than the mean of the observed values. A negative SHAP value indicates the feature 

observation impacted a prediction that was lower than the mean of observed values (Lund et al. 2022). A locally 

estimated scatterplot smoothing (LOESS) is presented as a red line. 

 

SHAP values provided a quantitative way to support the model by displaying the relation and 

interaction of feature values and prediction output. Interpretation of SHAP values provided 

insight into how ML models made predictions and the processes controlling sediment transport. 

The dimensionless streamflow SHAP dependence plots showed the highest SHAP values were 

near the 2-year RI (x=1), which indicates higher sediment transport near bankfull streamflow 

(Figures 1b). These results are consistent with bankfull streamflow being the most 

geomorphically active (Biedenharn et al. 2008; Lane 1955). The results from the ML models 

suggest that the engineered streamflow features helped reduce uncertainty between streamflow 

and sediment transport across varying river sizes and regions in Minnesota. The streamflow and 

geospatial features are helping the ML models account for complex sediment source and 

transport processes which has been found to be difficult when using traditional approaches 

(Atieh et al. 2015; Ellison et al. 2016; Francke et al. 2008; Vaughan et al. 2017) 

 

Advancements in data science and ML allowed for enhanced data driven sediment transport 

modelling, prediction accuracy, and interpretation techniques. Normalizing streamflow with the 

2-year RI reduced variability and constrained the streamflow dataset around geomorphically 

active bankfull streamflow. Calculating streamflow slope features helped to better account for 

changing streamflow conditions. Geospatial datasets that account for local, near-channel, and 

watershed features helped improve predictions by allowing the model to learn complex 

processes related to sediment transport. Comparing ML model SSLs to modeled SSLs from in-



situ sensors highlighted the utility of ML model's ability to learn and apply complex relations 

when making predictions at sites without physically collected samples. This study is a promising 

step forward in making fluvial sediment transport predictions using machine learning. Ongoing 

research is currently being completed by the USGS in other basins across the U.S. to make 

improvements to these methods by including time-series datasets like gridded precipitation and 

soil moisture to help capture complex antecedent conditions in the upstream watershed and 

local catchment while also using high-resolution digital elevation models to derive channel 

openness and slope-area indices to better describe the channel geomorphology.  

 

Disclaimer 
 

Any use of trade, firm, or product names is for descriptive purposes only and does not imply 

endorsement by the U.S. Government. 

 

References 
 

Afan, H.A., El-shafie, A., Mohtar, W.H.M.W., and YaseenPast, Z.M. (2016). Present and prospect of an 

artificial intelligence (AI) based model for sediment transport prediction. Journal of Hydrology, 

541B, 902–913. https://doi.org/10.1016/j.jhydrol.2016.07.048 

Atieh, M., Mehltretter, S.L., Gharabaghi, B., and Rudra, R. (2015). Integrative neural networks model for 

prediction of sediment rating curve parameters for ungauged basins. Journal of Hydrology, 531, 

1095–1107. https://doi.org/10.1016/j.jhydrol.2015.11.008 

Biedenharn, D.S., Watson, C.C., and Thorne, C.R. (2008). In M. H. Garcia (Ed.), Chapter 6. 

Sedimentation engineering, processes measurement, modeling, and practice (pp. 355–386). Ph.D. 

American Society of Civil Engineers, Practice No. 110. ASCE. 

https://doi.org/10.1061/9780784408148.ch06 

Chen, T., and Guestrin, C. (2016). XGBoost: A scalable tree boosting system. In Proceedings of the ACM 

SIGKDD international conference on knowledge discovery and data mining, 13–17-August-2016 

(pp. 785–794). https://doi.org/10.1145/2939672.2939785 

Cisty, M., Soldanova, V., Cyprich, F., Holubova, K., and Simor, V. (2021). Suspended sediment modelling 

with hydrological and climate input data. Journal of Hydroinformatics, 23(1), 192–210. 

https://doi.org/10.2166/hydro.2020.116 

Cutler, D.R., Edwards, T.C., Beard, K.H., Cutler, A., Hess, K T., Gibson, J., and Lawler, J.J. (2007). 

Random forests for classification in ecology. Ecology, 88(11), 2783–2792. 

https://doi.org/10.1890/07-0539.1 

Ellison, C.A., Groten, J.T., Lorenz, D.L., and Koller, K.S. (2016). Application of dimensionless sediment 

rating curves to predict suspended-sediment concentrations, bedload, and annual sediment loads 

for Rivers in Minnesota. U.S. Geological Survey Scientific Investigations Report 2016-5146 (68 p.). 

https://pubs.er.usgs.gov/publication/sir20165146 

Francke, T., Lopez-Tarazón, J., and Schröder, B. (2008). Estimation of suspended sediment 

concentration and yield using linear models, random forests and quantile regression forests. 

Hydrological Processes, 22, 4892–4904. https://doi.org/10.1002/hyp.7110 

Gray, J.R., and Simões, F.J M. (2008). Estimating sediment discharge: Appendix D. In Sedimentation 

engineering: processes, measurements, modelling, and practice. American Society of Civil 

Engineers. (pp. 1067– 1088). https://doi.org/10.1061/9780784408148.apd 

https://doi.org/10.1016/j.jhydrol.2016.07.048
https://doi.org/10.1016/j.jhydrol.2015.11.008
https://doi.org/10.1061/9780784408148.ch06
https://doi.org/10.1145/2939672.2939785
https://doi.org/10.2166/hydro.2020.116
https://doi.org/10.1890/07-0539.1
https://pubs.er.usgs.gov/publication/sir20165146
https://doi.org/10.1002/hyp.7110
https://doi.org/10.1061/9780784408148.apd


Lane, E.W. (1955). The importance of fluvial morphology in hydraulic engineering. Proceedings of the 

American Society of Civil Engineers, 81 (art.745), 1–17. 

Lund, J.W., & Groten, J.T. (2022). Extreme gradient boosting machine learning models, suspended 

sediment, bedload, and geospatial data, Minnesota, 2007–2019. U.S. Geological Survey data 

release. https://doi.org/10.5066/P9VOPSEJ 

Lund, J.W., Groten, J.T., Karwan, D.L., and Babcock, C. (2022). Using machine learning to improve 

predictions and provide insight into fluvial sediment transport. Hydrological Processes, 36(8), 

[e14648]. https://doi.org/10.1002/hyp.14648 

Lundberg, S.M., and Lee, S.I. (2017). A unified approach to interpreting model predictions. Advances in 

Neural Information Processing Systems, 30, 4766–4775. 

https://doi.org/10.48550/arXiv.1705.07874 

Molnar, C. (2019). Interpretable machine learning: A guide for making black box models explainable. 

https://christophm.github.io/interpretable-ml-book/ 

Vaughan, A.A., Belmont, P., Hawkins, C.P., and Wilcock, P. (2017). Near-channel versus watershed 

controls on sediment rating curves. Journal of Geophysical Research: Earth Surface, 122(10), 1901–

1923. https://doi.org/10.1002/2016JF004180 

Zounemat-Kermani, M., Mahdavi-Meymand, A., Alizamir, M., Adarsh, S., and Yaseen, Z.M. (2020). On 

the complexities of sediment load modeling using integrative machine learning: Application of the 

great river of Loíza in Puerto Rico. Journal of Hydrology, 585, 124759. 

https://doi.org/10.1016/j.jhydrol.2020.124759 

 

https://doi.org/10.5066/P9VOPSEJ
https://doi.org/10.1002/hyp.14648
https://doi.org/10.48550/arXiv.1705.07874
https://christophm.github.io/interpretable-ml-book/
https://doi.org/10.1002/2016JF004180
https://doi.org/10.1016/j.jhydrol.2020.124759

