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Abstract  
 
Excess or limited fluvial sediment transport can contribute to and exacerbate many 
environmental issues including nutrient loading, aquatic habitat degradation, flooding, channel 
navigation dredging, dam operation, and stream degradation or aggradation. However, fluvial 
sediment transport is difficult and expensive to comprehensively characterize because it can 
vary substantially both temporally and spatially. Having better estimates of fluvial sediment 
transport is important for understanding and solving these environmental issues when it is not 
possible to collect fluvial sediment samples. Different modeling approaches can be used to help 
estimate suspended sediment when sampling data are limited or unavailable. This study 
compared dimensionless sediment rating curves (DSRCs) developed in Pagosa Springs 
Colorado, Minnesota, and Michigan to determine if these DSRCs were suitable to make 
predictions of suspended sediment for Michigan rivers. 
 
Approximately 3,000 suspended sediment samples collected in or near Michigan from the mid-
1960s through August 2022 were used to develop two DSRC models. The DSRCs developed in 
Michigan include a pooled DSRC model which uses nonlinear least squares regression, and a 
mixed-effects DSRC model which uses a mixed-effects modeling approach. In general, there 
was not a noticeable improvement in the performance of the Michigan mixed-effects DSRC 
model over the Michigan pooled DSRC model. The two Michigan DSRCs were evaluated against 
DSRCs developed for Pagosa Springs and Minnesota. The results showed DSRC models 
developed from Minnesota and Michigan were similar to each other. In contrast, the Pagosa 
Springs DSRC predicts higher suspended-sediment concentration (SSC) at low flows and 
increases at a higher rate due to having a greater exponent. The Pagosa Springs DSRC produces 
higher SSC predictions that do not approximate the observed data well at most of the Michigan 
sites in the study. The results suggest that the Pagosa Springs DSRC was not suitable to make 
predictions of suspended sediment for Michigan rivers. The similarity of the DSRC equations 
developed for Minnesota and Michigan compared to the Pagosa Springs DSRC equation suggest 
that there may be regional patterns of SSC in the upper Midwest rivers that differ from those in 
other areas of the country like Pagosa Springs. A regionally applicable model could be 
developed and strengthened by combining data from additional midwestern states. Since the 
Michigan DSRCs goodness-of-fit metrics were comparable to the site-specific simple linear 
regressions (SLRs) and outperformed them in the aggregate goodness-of-fit metrics, the 
Michigan DSRCs are suitable to make predictions of suspended sediment in Michigan rivers 
with limited data. However, the availability of the DSRCs from this study should not diminish 
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the value of collecting physical samples and exploring alternative modeling approaches because 
of the uncertainty associated with using DSRCs. 

 

Introduction 
 

An understanding of sediment transport is necessary for river studies, bridge designs, flood-level 
computations, aquatic habitat assessments, cumulative watershed analyses, river restoration 
plans, and addressing Federal and State concerns relating to excessive sediment in streams. 
However, the training, time, and equipment needed to collect accurate sediment samples makes 
sediment studies expensive to conduct. Physical sediment samples collected in strategic 
locations can be used to develop empirical models that can maximize the utility of limited data 
collection efforts to provide estimates of sediment transport in rivers and provide the data 
needed to address sediment-related resource management issues (Barry et al. 2008; Rosgen 
2006, 2010; Troendle et al. 2001). One example of an empirical model is a dimensionless 
sediment rating curve (DSRC).  
 
Developing and applying DSRCs requires a strong relation between streamflow and sediment 
data (suspended-sediment concentration [SSC] or bedload) and involves developing 
dimensionless relations between streamflow and SSC or bedload. Bankfull streamflow is used as 
a normalization parameter to develop the DSRC models. One study developed four DSRCs from 
a small group of streams located in the San Juan River Basin near Pagosa Springs, Colorado and 
showed these equations could be used to estimate sediment transport for geographically far-
removed streams with different flow regimes, geology, and climate and provided improved 
predictions over theoretical equations (Rosgen 2010). The four Pagosa Springs DSRC model 
equations (Pagosa DSRCs) were delineated by Pfankuch (1975) stream stability categories. 
Ellison et al. (2016) tested to see if these Pagosa DSRCs could provide reasonable estimates in 
Minnesota where the geographic, flow regimes, geology, and climate are much different than 
Pagosa Springs, Colorado. The study also developed DSRCs with data collected in Minnesota 
and found the Minnesota DSRCs performed better than the Pagosa DSRCs. 
 
However, this method cannot be used everywhere because it is limited to sites that have a strong 
and positive relation between streamflow and SSC which is not the case for every site. It is 
common for streamflow and sediment transport to be uncorrelated which can be caused by 
many sediment supply and transport processes (Gellis 2013) that will not be elaborated in this 
paper. Also, the methods used in this study can only be used at sites that have bankfull 
streamflow estimates and have samples collected near bankfull streamflow. Even though the 
method requires data collection (3 samples), it is less than what is required when conducting a 
full sampling campaign (approximately 30 samples or greater). Rosgen (2010) suggested 
estimates of bankfull sediment data could be developed from an equation fitted through 
drainage area versus bankfull sediment to obtain inputs for the DSRCs when it is not possible to 
collect sediment data; however, that introduces additional uncertainty to the predictions that 
could be substantial. Alternatively, if enough data are available, another empirical model such as 
machine learning model could be developed to make predictions without the need for bankfull 
sediment data as was done in Lund et al. (2022). 
 
This study was a collaborative effort between the U.S. Geological Survey (USGS) Upper Midwest 
Water Science Center and the Michigan Department of the Environment, Great Lakes, and 
Energy (EGLE) Water Resources Division to explore whether DSRCs developed from data 
collected in Pagosa Springs (Rosgen 2010), Minnesota (Ellison et al. 2016), and Michigan were 



suitable to make predictions for other Michigan rivers. Existing SSC and streamflow data 
collected in Michigan were used to develop site-specific regression equations and two Michigan 
DSRCs. Site-specific regression equations and the Michigan DSRCs were compared to DSRCs 
developed in Minnesota (Ellison et al. 2016) and Pagosa Springs, Colorado (Rosgen 2010) to 
compare how well each model fit the collected data. There were some potential issues with how 
DSRC models were evaluated in Ellison et al. (2016) which this study tried to improve. One of 
the Michigan DSRC models was developed using a mixed-effects approach to address the lack of 
independence in the observational data due to repeated samples at each site.  
 
Description of the Study Area 
 
Michigan encompasses 58,110 square miles in the upper Midwestern United States (Library of 
Michigan 2022). Michigan contains two peninsulas, both of which are nearly surrounded by 
four of the Great Lakes: Huron, Michigan, Erie, and Superior (Library of Michigan 2022). The 
Great Lakes play an important role in moderating the state’s climate, causing it to be more 
temperate and moist than other north-central states (Frankson et al. 2022). Precipitation is 
common in the state but varies regionally. Statewide annual precipitation has ranged from a low 
of 22.7 inches in 1930 to a high of 41.8 inches in 2019 (NOAA NCEI 2022). Parts of the Upper 
Peninsula receive more than 180 inches of snow annually (Frankson et al. 2022). Michigan 
contains nine hydrologic unit code (HUC) HUC–level four basins (Western Lake Superior, 
Southern Lake Superior, Northwestern Lake Michigan, Southwestern Lake Michigan, 
Southeastern Lake Michigan, Northeastern Lake Michigan, Northwestern Lake Michigan, 
Northwestern Lake Huron, Southwestern Lake Huron, and St. Clair – Detroit (U.S. Geological 
Survey 2019). The fifteen sampling locations selected for this study represent a cross section of 
varying sized drainage areas within the major basins present in Michigan (Figure 1; Table 1). 



 
 

Figure 1. Map of Michigan and 15 U.S. Geological Survey streamflow-gaging stations where suspended-sediment 
concentration samples were collected. Base modified from U.S. Geological Survey and U.S. Census Bureau, various 

dated and various scales, and in Universal Transverse Mercator, zone 15, North American Datum of 1983. 



Table 1. Station information for 15 selected sites in Michigan.  
[mi², square miles; UP, upper peninsula; W, west; E, east; SW, southwest; 

NW, northwest; NE, northeast; SE, southeast; S, south] 
 

 
 

Methods 
 
Data Compilation and Site Selection 
 
The USGS compiled and reviewed existing SSC, bedload, and streamflow data from the National 
Water Information System ([NWIS] U.S. Geological Survey 2022) collected in the State of 
Michigan from the mid-1960s through August 2022 (Table 1). Since bedload data were limited, 
bedload was not included as part of the study. Instantaneous streamflow was used when 
available, and daily streamflow was used when instantaneous was unavailable. The data 
compilation resulted in a list of potential sites that could be used for the study. 
 
Determining Bankfull and Pfankuch Stability Ratings 
 
The list of potential sites compiled by USGS was shared with EGLE, and they selected sites and 
performed site evaluations that would include bankfull streamflow determinations and 
Pfankuch stability ratings (Rosgen 2001; Pfankuch 1975). The evaluations also included 
documentation of the sites with photos. EGLE compiled station descriptions and 
stage/streamflow rating information. The bankfull elevations were determined by a combination 
of methods involving surveys and identifying bankfull indicators such top of point bars, stain 
lines, bank undercuts, changes in slope, bank material, and vegetation (Leopold et al. 1964; 
Rosgen, 1994, 1996). For streamgages, bankfull elevations were referenced to the 
stage/streamflow rating curve to obtain the bankfull streamflow (bnkfulQ).  
 
Determining Suspended Sediment at Bankfull Streamflow 
 
Samples used to determine SSC at bankfull streamflow (SSCbank) were limited to samples 
collected within the range of one-half to two times bnkfulQ. At least three samples were required 

04040000 1974 2022 1,340 UP-W 46.72080 -89.20690 Good/Fair
04059500 1974 2022 450 UP-E 45.75500 -87.20200 Good
04119400 2011 2022 5,290 SW 43.01470 -85.95580 Good
04121970 2011 2013 2,313 NW 43.43470 -85.66530 Good/Fair
04122030 1974 1990 2,480 NW 43.31810 -86.03640 Good
04126970 1984 2008 141 NW 44.65670 -85.43670 Excellent
04142000 1966 2022 320 NE 44.07250 -84.02000 Fair
04161820 1996 2022 309 SE 42.61450 -83.02670 Good/Fair
04164000 1966 2006 444 SE 42.57780 -82.95170 Good/Fair
04167150 2014 2016 110 SE 42.33060 -83.24810 Fair
04168400 2014 2022 91 SE 42.30830 -83.25280 Fair
04176500 1967 2022 1,042 SE 41.96060 -83.53110 Good
04177080 2018 2022 70.8 S 41.70940 -84.49080 Poor
04177266 2018 2022 102 S 41.68330 -84.67000 Fair

041482663 2012 2022 19 SE 42.94190 -83.84610 Poor

Station 
Number

Start 
Date

End 
Date

Drainage 
Area (mi²) Region Latitude Longitude

Pfankuch 
Stability Rating



within this range to estimate mean SSCbank at a site. An initial estimate of SSCbank was 
computed by multiplying bankfull streamflow and the ratio of mean SSC to mean streamflow for 
samples within the range of 0ne-half to 2 times bankfull streamflow (Ellison et al. 2016). The 
initial estimate of SSCbank was recalculated using a jackknife resampling procedure described 
in Ellison et al. (2016) to reduce potential bias in this estimate due to small sample sizes.  
 
Data Analysis 
 
Because there were only two sites (USGS station numbers 041482663 and 04177080) that had a 
poor Pfankuch stability rating (Table 1), there were not enough data to develop a separate DSRC 
from these data like what was done in Rosgen (2010) and Ellison et al. (2016). Since the data 
collected at the poor stability sites did not deviate from the data collected at good/fair stability 
sites, data from all 15 sites in Michigan were combined to develop the DSRC models. 
Dimensionless values of streamflow (dimQ) and SSC (dimSSC) were computed by dividing each 
sample SSC and streamflow measurement by their SSCbank and bnkfulQ value, respectively 
(Table 2). Kendall’s tau (Kendall, 1938, 1975) was computed at each site to determine if there 
was a significant monotonic relation between dimQ and dimSSC (Table 2). Data from sites 
without significant relations (p-values of 0.05 or greater) were not used to develop models. The 
final dataset consisted of 2,988 SSC samples from 15 sites (Table 2).  

 
Table 2. Summary statistics and bankfull values for 15 selected sites in 
Michigan. [tau, Kendall’s tau; n, number of samples; bnkfulQ, bankfull 

streamflow; Q, streamflow; sd, standard deviation; SSC, suspended-sediment 
concentration; --, not available] 

 

 
 
The relation between dimQ and dimSSC was quantified using a nonlinear least squares 
(nls)regression model and a nonlinear mixed-effects model. The resulting DSRC equations can 
be used to estimate dimSSC at streamflows with limited SSC measurements. Dimensionless SSC 
estimates can then be converted into dimensional units by multiplying dimensionless value by 

04040000 0.53 248 9,421       236     23,700  1,664    2,426 9               1,540        94                200     

04059500 0.4 290 2,383      19        4,250    438       558                  -- 100            7                  11         

04119400 0.3 135 16,500    1,020 34,900  6,414    4,602 2               899            34                108     

04121970 0.27 57 6,046      921     10,800  3,807    2,350 1                34              6                  6          

04122030 0.57 108 5,571       810     20,200 2,443    2,160  3               312            25                36        

04126970 0.71 26 247          99       338        172        70        3               65              18                17        

04142000 0.46 351 1,930      80       2,685    439        433     1                358            45                62        

04161820 0.38 334 946          51        2,140     298       229     1                913            43                73        

04164000 0.4 32 1,301       109     2,380    584       648     2               412            127              136      

04167150 0.51 38 588         22       1,015     191         193      8               240            69                69        

04168400 0.47 45 735          34       965        212        241      4               341            80               94        

04176500 0.49 266 3,327      53       13,500  1,412     1,848 1                807            76                114      

04177080 0.48 274 145          9          1,520     154        171      4               2,117         127              200     

04177266 0.49 281 376          3          1,710      202       213      1                672            90               108     

041482663 0.51 503 127           0          552        49          72        3               22,130      278             1,383  

*All tau p-values are less than 0.001 from Z-test

Station 
Number tau* n meanQmaxQminQbnkfulQ sdSSCmeanSSCmaxSSCminSSCsdQ



SSCbank. Weighted nonlinear least squares regression was used to quantify the relation 
between dimQ and dimSSC using the following equation form:  

𝑦𝑦 =  𝐵𝐵 + (1 − 𝐵𝐵)𝑋𝑋𝐵𝐵2                   (1) 

where 

𝑦𝑦 is a dimensionless ratio value of SSC, 

𝐵𝐵 is a coefficient determined from the data, 

𝑋𝑋 is a dimensionless ratio value of streamflow, and 

𝐵𝐵2 is a coefficient determined from the data. 

This equation form was developed in Ellison et al. (2016) such that the fitted model would pass 
through the calculated SSCbank at bnkfulQ. However, the equation developed in this study was 
weighted differently than the equation in Ellison et al. (2016), which was weighted by the 
inverse of dimQ because the residuals increased as dimQ increased. The residuals from the 
DSRC equation developed from the Michigan data did not follow this pattern. Instead, the 
Michigan DSRC was weighted with the inverse of the number of samples at the site. This 
approach equalizes the influence of the different sites and reduces the potential bias that can 
occur because some sites had many samples, and other sites had fewer samples. Equations were 
fit using the nls function in R (R Development Core Team, 2022).  
 
The data used to develop the Michigan DSRC equation contain a different number of samples 
from each of the 15 sites (“n” in Table 2). The DSRC was fit by pooling all samples together and 
fitting a regression line. However, these pooled data violate the regression assumption of 
independence because observations from a particular site may have a different relation than 
samples from other sites or the general population. This can result in heteroskedastic errors if 
observations from different sample sites exhibit dissimilar residual patterns. It can also skew the 
fitted equation towards one or more sites with larger sample sizes at the expense of less-sampled 
sites. To address this lack of independence, a nonlinear mixed-effects DSRC model was also fit 
to the same data.  
 
A mixed-effects model quantifies fixed effects (relations between dimQ and dimSSC that are the 
same across all sites) and random effects (differences in the relation between dimQ and dimSSC 
from one site to another site). The mixed effects model produces site-specific model coefficients 
for each site in the dataset as well as a population-level model coefficients which can be used to 
predict dimSSC at new locations. The nonlinear mixed effect model was fit using the nlme 
package in R (Pinheiro and Bates 2022). 
 
Site specific log-simple linear regression (SLR) equations were independently developed for 
each site. These equations relate the logarithm of measured SSC to the logarithm of streamflow. 
Site specific equations were developed as benchmarks for the performance of the DSRC models. 
 
Evaluating Model Performance 
Model performance was first assessed by comparing observed SSC values to cross-validated 
model predictions as well as visual methods. Cross-validation model predictions of SSC were 



obtained at each site by first removing the data collected at that site and refitting a model with 
the remaining data. Then, the refit model was used to predict SSC at the site which was removed 
from the dataset. This process was done at each site of the 15 sites. Cross-validation predictions 
are more representative of model performance for new predictions because the data for the site 
being predicted are not in the model development data set. This method of validation was an 
improvement compared to how the models were evaluated in Ellison et al. (2016) which used 
the same data to develop and validate the models. 
 
Cross-validation model predictions were evaluated by using several goodness-of-fit metrics 
including a modified Nash-Sutcliffe efficiency (mNSE) and the Kling-Gupta efficiency (KGE). 
The Nash-Sutcliffe efficiency ([NSE] Nash and Sutcliffe 1970) is commonly used to assess 
hydrologic model performance. An NSE of zero represents the same performance as could be 
obtained by using the mean of the data. Positive NSE values represent an improvement on this 
baseline and negative values indicate performance worse than the mean. Because the NSE 
incorporates the squared difference between model predictions and observed values in the 
numerator, it is oversensitive to and can be biased by large outliers in the data. The mNSE 
lessens this bias by using the absolute value of the difference between predictions and 
observations rather than the squared difference (Legates and McCabe 1999).  
 
The KGE is increasingly used as an alternative to the NSE in assessing hydrologic model 
performance. The KGE addresses several shortcomings of the NSE by combining the 
correlation, bias, and variance of model predictions in a more balanced way (Gupta et al. 2009). 
Interpretation of the KGE is similar to NSE, with positive values up to 1 indicating ‘good’ 
performance and low or negative values indicating ‘poor’ performance. 
 

Results 
The pooled DSRC and mixed-effects DSRC models developed from the Michigan data as well as 
the Pagosa and Minnesota DSRC models are presented below (Figure 2):  

Michigan Pooled DSRC (good/fair/poor stability): 𝑆𝑆𝑆𝑆𝑆𝑆 =  0.023 +  0.977𝑄𝑄𝑑𝑑0.913 (2) 

Michigan Mixed-Effects DSRC (good/fair/poor stability): 𝑆𝑆𝑆𝑆𝑆𝑆   =  0.11  +  0.89𝑄𝑄𝑑𝑑1.09  (3) 

Pagosa DSRC (good/fair stability): 𝑆𝑆𝑆𝑆𝑆𝑆 =  0.0636 +  0.9326𝑄𝑄𝑑𝑑2.4085 (4) 

Minnesota DSRC (good/fair stability): 𝑆𝑆𝑆𝑆𝑆𝑆 =  0.026 +  0.974𝑄𝑄𝑑𝑑0.951 (5) 

SSC is a dimensionless ratio value of suspended-sediment concentration, 

and 

𝑄𝑄𝑑𝑑 is a dimensionless ratio value of streamflow. 



 
 

Figure 2. Four dimensionless sediment rating curve (DSRC) equations applied to select Michigan (MI) rivers. 
 

The uncertainty in regression coefficients was due to variability and uncertainty in the 
underlying sample dataset. When quantifying the uncertainty in regression predictions, 
bootstrap prediction intervals were computed for the Michigan DSRC equation (gray shade in 
Figure 2) using the nlstools package (Baty et al. 2015). These intervals represent the range of 
values that contain the true value in a specified prediction 95-percent of the time. It is important 
to consider that there is additional uncertainty in these equations because dimensionless values 
were computed using SSCbank estimates which also has uncertainty. This additional uncertainty 
is not included in the bootstrap prediction intervals. Additionally, prediction intervals are 
representative of the uncertainty in the dimSSC only and do not include the additional 
uncertainty in SSC predictions, which are multiplied by the SSCbank.  
 
Regression trend lines are shown for each site in Figure 3. Site specific SLR models are also 
included for comparison as they are assumed to provide the most accurate predictions of 
suspended sediment at a given location. DSRCs developed for Michigan (Equation 2) and 
Minnesota (Equation 3) are nearly linear, with exponents near 1 and a y- intercept near zero. In 
contrast, the Pagosa DSRC predicts higher SSC at low flows and increases at a higher rate due to 
having a greater exponent. The Pagosa DSRC (Equation 4) produces higher SSC predictions that 



do not approximate the observed data well (Figure 4) and at most sites (Figure 3). The similarity 
of DSRC equations developed in Minnesota and Michigan in contrast to the Pagosa DSRC 
equation suggest that there may be regional patterns of SSC in upper Midwest streams that 
differ from those in other areas of the country. A regionally applicable equation could be 
developed and strengthened by combining data from additional midwestern states.  
 

 
 

Figure 3. Four dimensionless sediment rating curves (DSRCs) and site specific simple linear regression (SLR) 
models with trendlines and prediction intervals for 15 selected rivers in Michigan (MI). The number above each panel 

is the site’s station number.  



 
 

Figure 4. Observed versus predicted values of suspended-sediment concentrations from five models. 
 
The mNSE and KGE were computed for cross-validated predictions at each site using the pooled 
DSRC and mixed-effects DSRC models developed from Michigan data as well as predictions 
using the site-specific SLRs, and the Pagosa and Minnesota DSRC models. Median values of 
mNSE and KGE are shown in Table 3 while site specific KGEs are shown in Figure 5. Regionally 
developed upper Midwestern DSRC equations (Minnesota and Michigan) outperformed the 
Pagosa DSRC equation at most sites (Figure 5). Model performance was comparable across site 
specific models and the DSRC equations developed in Minnesota and Michigan. The Pagosa 
DSRC had the worst model performance with a median mNSE and a median KGE of -0.33 and   
-0.89, respectively (Table 3). Median mNSE values across sites were 0.24 and 0.16 for the 
Michigan pooled DSRC and the Michigan mixed-effects DSRC respectively, and median KGE 
values were 0.37 and 0.34 (Table 3). The Michigan pooled DSRC model had higher KGE values 
than the site-specific models (Figure 5). Due to the poor goodness-of-fit metrics of the Pagosa 



DSRC, it is not suitable to make predictions of SSC for Michigan rivers compared to the other 
DSRC equations. 
 

Table 3. Goodness-of-fit metrics for simple linear regression (SLR) models, Michigan 
(MI), Pagosa, and Minnesota (MN) dimensionless sediment rating curves (DSRCs), and 
the MI mixed model. [med, median; rmse, root mean squared error; pbias, percent bias; 

nse, Nash-Sutcliffe efficiency; mnse, modified Nash-Sutcliffe efficiency; kge, Kling-
Gupta efficiency] 

 

Equation med.rmse med.pbias med.nse med.mnse med.kge 
Site-specific 
SLR 73.01 -30.5 0.15 0.31 0.15 
MI DSRC 65.88 5.6 0.31 0.24 0.37 
Pagosa DSRC 190.42 1.3 -6.82 -0.33 -0.89 
MN DSCRC 66.53 3 0.32 0.26 0.37 
MI Mixed 
Model 68.06 14.1 0.2 0.16 0.34 

 

 
 
Figure 5. Kling-Gupta efficiency values for Pagosa, Minnesota (MN), Michigan (MI) dimensionless sediment rating 

curves (DSRCs), MI mixed model, and site-specific simple linear (SLR) regression models for selected rivers in 
Michigan. 



Some site-specific SLR did not perform as well as expected. Lack of fit in these SLRs was due to 
a combination of small sample size and outlier influence. Additionally, site-specific SLRs 
assumed a linear relation between the log of SSC and log of streamflow; however, at some 
locations, the assumption of linearity was not true at very low streamflows, causing bias and 
poor fit which is not obvious in Figure 3. At some sites, the site-specific SLRs performed well, 
and their KGEs were comparable or better than the Michigan pooled DSRC model (Figure 5). 
The Michigan pooled DSRC model benefits from being less affected by outliers because there are 
more data points. Goodness-of-fit metrics are subject to bias due to sampling uncertainty such 
as sampling sizes, high variability, or outliers. The goodness-of-fit metrics used here try to 
overcome this bias but are still prone to uncertainty. Therefore, we used a suite of goodness-of-
fit metrics, not just a single metric, to compare between models (Althoff and Rodrigues 2021; 
Clark et al. 2021). In general, there was no improvement in the performance of the Michigan 
mixed-effects DSRC model over the Michigan pooled DSRC model. Since the Michigan DSRCs 
goodness-of-fit metrics were comparable to the site-specific SLRs (Figure 5) and outperformed 
them in the aggregate goodness-of-fit metrics (Table 3), the Michigan DSRCs are suitable to 
make predictions in Michigan rivers with limited data. 

 
Although regional Midwestern DSRCs (Minnesota and Michigan) provide more accurate 
predictions in Michigan than the Pagosa DSRC equation, the variability of the data may not be 
well explained by either equation. There are several types of variability which may be degrading 
the performance of Minnesota and Michigan DSRC equations. Some sites have very high outlier 
values of SSC at lower streamflows which do not follow the relation of other samples at that site. 
In some cases, SSC values seem to have two diverging relations with streamflow. For example, at 
one site (USGS station number 04176500), there are apparently two relations – one in which 
SSC increases rapidly around bankfull streamflow and one in which SSC remains moderate at 
high streamflows (Figure 3). These high SSC values could be due to upstream and or local 
sediment and streamflow related factors that could explain these differences. If these factors 
could be identified, they could be incorporated into a new equation or a machine learning model 
to provide better estimates. 
 

Summary 
 
A thorough understanding of sediment transport is necessary for river studies because excess or 
limited fluvial sediment transport can contribute to and increase many environmental issues 
including: nutrient loading, aquatic habitat degradation, flooding, channel navigation dredging, 
dam operation, and stream degradation or aggradation. However, fluvial sediment transport is 
difficult and expensive to comprehensively characterize because it can vary substantially both 
temporarily and spatially. Having better estimates of fluvial sediment transport is important for 
understanding and solving these environmental issues. Different modeling approaches can be 
used to help provide estimates of suspended sediment when sampling data are not available. 
This study compared DSRCs developed in Pagosa Springs, Minnesota, and Michigan to 
determine if these DSRCs were suitable to make predictions of suspended sediment for 
Michigan rivers. 
 

Approximately 3,000 suspended sediment samples were collected in or near Michigan from the 
mid-1960s through August 2022. These samples were used to develop two DSRC models for 
Michigan. Site-specific regression equations were compared to DSRCs developed in Michigan, 
Minnesota, and Pagosa Springs to compare how well each model fit the collected data. The results 
showed that the DSRC equations developed from Minnesota and Michigan were more similar 



than the DSRC equation developed from data collected in Pagosa Springs. In contrast, the Pagosa 
DSRC predicts higher SSC at low flows and increases at a higher rate due to having a greater 
exponent. The Pagosa DSRC produces higher SSC predictions that do not approximate the 
observed data well at most of the sites in the study. The results suggest that the Pagosa Springs 
DSRC was not suitable to make predictions of suspended sediment for Michigan rivers. In general, 
there was not a noticeable improvement in the performance of the Michigan mixed-effects DSRC 
over the Michigan pooled DSRC. The similarity of the DSRC equations developed in Minnesota 
and Michigan compared to the Pagosa DSRC equation suggests there may be regional patterns of 
SSC in the upper Midwest rivers that differ from those in other areas of the country. A regionally 
applicable model could be developed and strengthened by combining data from additional 
midwestern states. Since the Michigan DSRCs goodness-of-fit metrics were comparable to the 
site-specific SLRs (Figure 5) and outperformed them in the aggregate goodness-of-fit metrics 
(Table 3), the Michigan DSRCs are suitable to make predictions in Michigan rivers with limited 
data available. However, the availability of the DSRCs from this study should not diminish the 
value of collecting physical samples and exploring alternative modeling approaches because of 
the uncertainty associated with using DSRCs. 
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