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Abstract  
 
Like crop production, expansion of livestock production is also crucial to meet increased food 
demands to cope with human population growth and ongoing climate change. As such, the use 
of natural plant communities for grazing herbivores has increased immensely with or without 
proper management in rangeland or cropland. With the advancement of science and technology, 
ranchers, grazers, scientists, and governments recently recognized proper grazing management 
for the conservation of natural resources to maximize productivity without harming the socio-
ecological long-term sustainability of croplands. This study concentrates on developing a 
methodology to preserve natural processes such as runoff at the farm outlet while maximizing 
the biomass during scheduled grazing operations. This study validates the applicability of this 
approach for quantitative and qualitative assessment of seasonal and interannual hydrology of 
the humid area, South Central United States, influenced by grazing operations in grassland and 
cropland. For this, we used the framework established in the recently modified crop simulation 
model, Agricultural Policy Extender (APEX) model relying on available soil, weather, and 
climate datasets and published databases on management practices for multiple grazing 
operations. Specifically, the main objective is to utilize four calibrated APEX models modified 
for continuous grazing operation based on the available runoff datasets and perform uncertainty 
analysis to elucidate the sensitive parameters that impact the field scale hydrology. This 
research highlights the need for more adaptive grazing strategies to allow the sustainability of 
the cropland ecosystem. It will also inform potential interactions of livestock management with 
the cropland's climate, weather, and hydrology. Further, we will discuss potential research 
avenues that generate scenarios under different climates, land use, and other humid, semi-arid, 
arid areas. 
 

Introduction 
 
Healthy ecosystems are crucial to the sustainability of the planet's inhabitants since they provide 
both qualitative and quantitative ecosystem services. However, increased stressors, like growing 
urbanization and climate change, have degraded vegetation, soil, and biodiversity while 
reducing ecosystem resilience (Moreno García et al. 2014; Teague and Barnes 2017). To cope 
with these challenges, the sustainability of a healthy ecosystem requires managing the land to 
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regenerate it to maintain stable and productive soils, air and water quality, and biological 
integrity (MEA 2005). In this regard, a growing body of research seeks to develop innovative 
approaches to enhance the productivity and resilience of essential services. 
 
Researchers use conceptual or numerical (semi) distributed hydrological models, which are 
relevant to agricultural management and relatively easy for parameterization (Singh et al. 1999, 
p. 199; Devi et al. 2015; Curk and Glavan 2021). However, these models require large input data, 
and their parameters cannot easily be measured due to the inherent variability in natural 
processes, costly monitoring, or inappropriate methods of data measurements, leading to a 
substantial amount of uncertainty (Haan 2002; Wang et al. 2005). Therefore, scientists always 
seek a proper methodology to identify intrinsic parameters' uncertainty. Proper quantitative 
uncertainty analysis may allow us to evaluate parameters’ likelihood as valuable information for 
policy and decision-makers. 
 
Benefits from pasture management for hay includes reducing soil bulk density and increasing 
soil organic carbon and water quality (Gilley et al. 1996; Gautam et al. 2018). However, there is 
limited research on the effects of grazing operations on the quality and quantity of water at the 
farm or field scale (Mohtar et al. 1997; Johnson et al. 2003; Mudgal et al. 2010; Udawatta et al. 
2010; Doran-Browne et al. 2014; Zilverberg et al. 2017, 2018; Gautam et al. 2018; Poděbradská 
et al. 2021; Cheng et al. 2022; Fang et al. 2022). Nonetheless, they addressed limited issues 
related to water quality and quantity due to grazing operations. 
 
The Agricultural Policy Environmental Extender (APEX) model is a process-based hydrological 
model suitable for a wide range of applications recommending best management practices in 
agriculture, such as nutrient management (Williams and Izaurralde 2010; Kamruzzaman et al. 
2020), tillage operations (Wilson 2019; Bosch et al. 2020; Tadesse et al. 2021), conservation 
practices (Wang et al. 2009; Francesconi et al. 2015), climate change's impact on crop yield yield 
(Williams et al. 1998; Choi et al. 2017). Some research has been conducted on the calibration of 
the APEX model investigating the impact of agriculture management practices on runoff and 
sediment (Wang et al. 2008; Bhandari et al. 2017; Ramirez‐Avila et al. 2017; Nelson et al. 
2018)with few works focused on animal-grazed agroforestry lands (Kumar et al. 2011; Gautam 
et al. 2018). None of them have accounted for the impact of grazing operations on runoff and 
sediment dynamics, even at the farm scale.  
 
This study aims to augment the current knowledge of water quantity and quality and biomass 
and environmental stresses in response to grazing operations. It will do this by using the APEX 
model in grassland and cropland. Therefore, the main objective is to utilize four calibrated 
APEX models modified for continuous grazing operation based on the available runoff datasets 
and perform uncertainty analysis to elucidate the sensitive parameters that impact the field scale 
hydrology. The findings of this study highlight the uncertainty present in various aspects of the 
APEX model and should be taken under consideration when using the model for similar 
purposes in the future. As a result, it will also be possible to understand the interaction between 
livestock management and the cropland's climate, weather, and hydrology. Further, we will 
examine possible research avenues that generate scenarios under different climates, land uses, 
and other humid, semi-arid, and arid environments. 
 

Materials and Method 
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Study Site  
 
The study utilized measured runoff and sediment data, as well as management information 
published by Nelson et al. (2019a, 2020). APEX model calibration and uncertainty analysis of its 
parameters related to surface runoff and sediment were conducted on two watersheds from 
eight Water Resources and Erosion (WRE) Watersheds (Figure 1). The WRE facility addresses 
several research questions on water quality and quantity, soil property variability, erosion and 
sedimentation, groundwater levels, and the effects of alternative land management methods and 
land uses. For detail information about this site, see Vogel et al. (2000, 2001) and Nelson et al. 
(2019a). The report from Nelson et al. (2020) includes  all management activities from 1977 to 
2000, which reflect the management of native prairie pastures and winter wheat cropping 
patterns in the Southern Great Plains, such as planting, fertilizer and pesticide applications, 
grazing operations and major tillage operations like plowing, mulching, disking, and harvesting. 
We calibrated the APEX model based on this information. 

 
 

Figure 1. Location of study site within Water Resources and Erosion (WRE) watersheds in El 
Reno, OK, indicating the outlet of each farm by circles where runoff was measured via H- flume. 
 
In order to provide examples, we considered only two watersheds, one where native prairie was 
present (WRE1) and another in which winter wheat was grown (with oats as an intercropping 
during in 1983) (WRE8). WRE1 was planted with native tallgrass prairies with frequent grazing 
and infrequent hay bales. On the other hand, WRE8 was a highly disturbed site with heavy 
tillage and cropped to winter wheat followed by summer fallow land (Nelson et al. 2019a).  



4 
 

Model Development 
 
The APEX model has diverse parameters and input datasets from various interdisciplinary fields 
such as climate, weather, surface (subsurface) hydrology, soil science, agronomy, and 
agricultural management. The database includes characteristics of crops, fertilizers, pesticides, 
tillage, and herds. A few items not in the pesticide database were updated for pesticides based 
on the literature. For instance, information about the pesticide glyphosate was adopted from 
Peachey (2022). As a driving parameter or input to the model, we collected the required daily 
climate data: minimum and maximum temperature and rainfall from the Oklahoma MESONET 
(https://www.mesonet.org, MESONET (1994) from January 1st, 1977, to December 31st, 2018, 
by WRE personnel to generate a daily weather file for both farms. As mentioned in "Study Site," 
management data such as tillage, fertilization, pesticides, and grazing schedules were obtained 
from the site and compiled by Nelson et al. (2020). We also utilized measured surface runoff 
and sediment data at each watershed outlet (Figure 1) from 1977 to 2000. 
 
The initial set up of the model was made through the NTT (Nitrogen Tracking Tool) interface. 
Most of the model input files generated by NTT, including weather, were modified in the 
APEXeditor Excel-based tool for editing APEX input files suitable for APEXgraze (Osorio Leyton 
2019). The modifications mostly included fertilizers, pesticides, and management information 
like tillage and grazing schedules. Another set of models was also made for grassland and 
cropland just by removing grazing information and adjusting conventional tillage operations for 
non-grazing scenarios. A grazer file was also prepared following the procedure adopted by 
Zilverber et al. (2017).  
 
Simulations started from January 1, 1979, for 52 years, and on January 1, 1978, for 53 years, for 
WRE1 and WRE8, respectively. By extending both simulations until December 31, 2030, we can 
examine how existing grazing schedules affect pastureland and cropland. We aimed to 
parameterize the APEX model to simulate surface runoff and sediment under grazing and 
normal tillage operations. Only key parameters related to hydrology and sediment 
recommended from the literature (Wang et al. 2011; Bhandari et al. 2017; Nelson et al. 2019b) 
were considered for calibrating the APEX Model. For the sediment or soil erosion, we used 
RUSLE2 transport capacity parameter, and RUSLE2 threshold transport capacity because 
RUSLE2 (Revised Universal Soil Loss Equation 2) is suitable for highly disturbed lands, such as 
pastures, rangelands, and grazing lands (Foster et al. 2003; McCool et al. 2004).  
 
Calibration and Uncertainty Analysis  
 
Calibration:  The study required the adjustment of 20 parameters, further discussed elsewhere 
in these proceedings under Nelson et al. We utilized the high-performance computing resources 
from the USDA-SCINet Office of Scientific Computing to expedite the iterative process. Due to 
the limitations of existing optimization algorithms (Wang et al. 2014; Talebizadeh et al. 2018), 
this work assumes that each parameter is distributed as a normal distribution, as described in 
Table 1 (left column). Based on the conceptualization of our research, Table 1 summarizes the 
protocol for calibration and uncertainty analysis. Since there are limited observations, the model 
was warmed up over four years and calibrated over eleven years. Until 2000, the remaining 
years were used to validate the model. 
 
Uncertainty Analysis:  While several existing approaches conduct uncertainty analysis of 
model parameters (Peter 1979; Beven 1993; Hession et al. 1996; Chaubey et al. 1999; Pebesma 
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and Heuvelink 1999; Haan and Skaggs 2003), most of them rely on Monte Carlo simulation, 
likelihood measures, and the concept of Bayesian inference. These notions require knowledge of 
parameter distribution and inter-parameter relationships, which are indeed challenging to 
obtain. This study adopts a simplified procedure (Table 1, right column) for uncertainty 
analysis without assuming linearity, as their nonlinear distribution often uses random 
independence.  
 

Table 1. Algorithm for parameterization and uncertainty analysis used in this study.  
 

Parameterization (Calibration) Uncertainty analysis 
• Obtain the range of parameters from the 

literature ((Osorio Leyton et al. 2018). 
• Discretize the parameters up to 𝑁𝑁 and 

generate parameter space 𝑃𝑃 × 𝑁𝑁. 
• Set the simulation numbers 𝑀𝑀. 
• For each parameter set, 𝑖𝑖 ∈ 𝑀𝑀, define 

random seed. 
• Shuffle each parameter 𝜃𝜃𝑗𝑗 ∈ 𝑃𝑃 and make a 

parameter set for each run 𝑖𝑖. 
• Update APEXPARM.DAT (parameter file) 
• Run the program. 
• Evaluate and store the performance 

metrics with respect to the measurement. 
• Repeat until 𝑀𝑀 simulations 

• Set the performance metric criteria 
• Read parameter range, [𝜃𝜃𝑛𝑛,𝜃𝜃𝑥𝑥]  
• Find the best parameter set, say 𝑤𝑤 from 

the calibration runs within the criteria.   
• Find the mean 𝜇𝜇𝑤𝑤 and standard deviation, 

𝜎𝜎𝑤𝑤  for each parameter 
• Vary the parameters from -3.0 to +3.0 

times 𝜎𝜎𝑤𝑤 and calculate new parameter as 
𝜃𝜃𝑖𝑖 = 𝜇𝜇𝑤𝑤𝑖𝑖 + 𝑝𝑝𝜎𝜎𝑤𝑤𝑖𝑖 

where 𝑝𝑝 ranges from -0.01    to 0.01 
• Update APEXPARM.DAT file and run the 

program 
• Store the result from each iteration for 

post processing 
 
Performance Measure: We implemented the statistical metrics suggested by Moriasi et al. 
(2007) to compare modeled surface runoff and sediments with observed data. They are 
coefficient of determination (𝑅𝑅2), Nash-Sutcliff efficiency (NSE), and Percent Bias (PBIAS). In 
addition, we also modified the objective function used by Wang et al. (2014) introducing 𝑅𝑅2 as  

𝑂𝑂𝐹𝐹 = �(1 − 𝑅𝑅2)2 +  (1 −𝑁𝑁𝑁𝑁𝐸𝐸𝑖𝑖)2 +  �|𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑁𝑁𝑖𝑖| +
1
3
�
2
 

(1) 
 

 
Finally, postprocessing reduces the APEX parameter space within the guidelines recommended 
by Moriasi et al. (2007, 2015). Note that parameter set having least objective function values 
among the parameters within the criteria set by  Moriasi et al. (2007, 2015). 
 

Results 
 
Calibration and validation results 
 
Figure 2 and Figure 3 compare the modeled surface runoff via the APEX model corresponding 
to the four best parameter sets (not reported) with the measured surface runoff at the outlet of 
watersheds WRE1 and WRE8, respectively. We obtained these parameters within the subset of 
the 100,000 parameter sets that satisfy the Moriasi criteria at the daily level. For instance, in 
WRE1, we obtained 553 parameters that met this criterion. Among them, we selected a) the one 
corresponding to the least objective function (top row), b) the one with the highest Nash-
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Sutcliffe Efficiency, NSE (second row), c) the one with the highest coefficient of determination, 
COD (R2) (third row), and d) the one having the smallest absolute percent bias, PBIAS (last 
row). 
 

 
Figure 2. Daily timeseries of best representations of surface runoff  optimized at daily scale for 

WRE1. Native prairie without grazing, right: Native prairie with grazing 
 

 
Figure 3. Daily timeseries of best representations of surface runoff optimized at daily scale for 

WRE8. Cropland without grazing, right: Cropland with grazing 
 
In all four cases, the representations are like the observations and are all cousins to the naked 
eye. Except for a few discrepancies, most of the major features, including low-flow events, are 
well captured.  As expected, the performance metrics reported in Table 2 for WRE1 and Table 
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3 for WRE8 are comparable. In WRE1, note that COD always exceeds 0.62, NSE>0.58 and an 
absolute value of PBIAS is less than 15% with a smaller value of objective functions during 
calibration (Table 2). Likewise, WRE8 calibration has COD<0.73 and NSE>0.67. However, 
PBIAS exceeds the 15% criterion, which impacts the objective function. It is also realized that 
WRE8 has similar performance metrics in non-grazing and grazing scenarios (Table 3). It may 
reflect that they have the same best parameter sets (not reported). 
 

Table 2. Performance metrics of calibrated and validated APEX model for surface runoff at 
WRE1 without and with grazing operations 

 

Stage Best 
Without grazing With grazing 

OF NSE PBIAS COD OF NSE PBIAS COD 
Calibration COD 0.62 0.63 0.6 0.64 0.66 0.7 0.63 0.7 
 RMSE, mm 2.52 2.38 2.55 2.63 2.27 2.15 2.4 2.17 
 NSE 0.58 0.63 0.57 0.54 0.66 0.69 0.62 0.69 
 PBIAS, % -0.02 -3.69 -0.02 -14.55 -0.02 -10.24 0 -14.83 
 OF 0.67 4.06 0.68 14.89 0.6 10.58 0.63 15.17 
Validation COD 0.23 0.27 0.26 0.23 0.25 0.3 0.37 0.29 
 RMSE, mm 3.25 3.08 3.2 3.48 3.14 3.06 2.87 3.08 
 NSE 0.19 0.27 0.22 0.07 0.25 0.28 0.37 0.27 
 PBIAS, % 4.49 1.06 -0.49 -20.77 21.92 -5.18 24.15 -5.37 

 
Table 3. Performance metrics of calibrated and validated APEX model for surface runoff at 

WRE8 without and with grazing operations 
 

Stage Best  
Without grazing With grazing 

OF NSE PBIAS COD OF NSE PBIAS COD 
Calibration COD 0.73 0.73 0.73 0.76 0.73 0.73 0.73 0.76 
 RMSE, mm 1.85 1.78 1.85 1.79 1.85 1.78 1.85 1.79 
 NSE 0.67 0.7 0.67 0.7 0.68 0.7 0.68 0.7 
 PBIAS, % -30.4 -32.27 -30.4 -32.4 -30.33 -32.22 -30.33 -32.39 
 OF 30.74 32.61 30.74 32.74 30.67 32.56 30.67 32.73 
Validation COD 0.43 0.37 0.43 0.39 0.42 0.36 0.42 0.39 
 RMSE, mm 2.63 2.76 2.63 2.73 2.65 2.79 2.65 2.72 
 NSE 0.43 0.37 0.43 0.38 0.42 0.36 0.42 0.39 
 PBIAS, % 23.88 21.86 23.88 22.81 24.75 21.89 24.75 22.59 

 
Results from Uncertainty analysis 
 
Figure 4 reveals a simulated annual average monthly surface runoff hydrograph with a wide 
range of uncertainty in all scenarios. For this, we obtained the mean and three times the 
standard deviation of each parameter from the sets of calibrated parameters within the Moriasi 
criteria (Table 1, right column). As an illustration, the implied parameters correspond to the 
daily scale optimization. Observe that WRE1 has much variability in the monthly hydrographs 
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and differs from grazing (Figure 4, bottom left) to non-grazing (Figure 4, top left). In 
contrast, WRE8 (right) has similar variation in both scenarios, implying that their parameter 
space is like calibration. 

AS

 
 

Figure 4. Range of average annual monthly hydrograph implied by parameter range set in 
uncertainty analysis. 

 

Conclusions and recommendations 
 
Grassland and cropland surface runoff quantities were investigated using a process-based 
hydrological model APEX. For calibration purposes, we relied on key parameters related to 
hydrology and sediment that often introduce challenges in managing agricultural-based 
watersheds. Moreover, this study utilized the calibrated parameters to determine the range of 
underlying parameters in a simple manner. The results reported here are promising and useful 
for decision makers. However, the dataset used in this study does not include documentation 
regarding the sampling method, quality assurance, and control during sampling and analysis. 
So, more research is needed to gain a deeper understanding of the system by expanding such 
datasets in such instances. Future research could adopt a similar strategy to explore the 
underlying uncertainties in the model structure. Based on the analysis, this study recommends 
advancing the optimization of model parameters through stochastic approaches such as particle 
swarm optimization and others. Finally, it might provide an opportunity for revising the 
procedure in order to detect redundant parameters related to uncertainty and sensitivity 
analyses. 
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