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Abstract 
 
As a part of the WaterSMART Basin Study Program, PWRE worked on the Truckee Basin Water 
Management Options Pilot Study to develop flexible reservoir flood control operational criteria without 
increasing downstream flood risk. This study, among other things, evaluated Forecast Informed Reservoir 
Operations and flexible rule curves using a Multi-Objective Evolutionary Algorithm (MOEA) to optimize 
flood control regulation criteria and balance the tradeoffs between water supply, flood risk mitigation, and 
environmental flow objectives in the basin. This report documents the study and how MOEA provided a 
wholistic technical and decision-making framework that enabled stakeholders to develop alternative 
regulation criteria that optimally minimized risk and maximized benefits in the basin. 
 

Introduction 
 
Problems faced by water resource managers regularly necessitate decisions that balance the tradeoffs 
between multiple, often competing objectives. These problems, complex in nature, require a thorough 
technical approach to minimize the inherent risk in the decision. Multi-Objective Evolutionary Algorithms 
(MOEAs) provide an innovative, holistic decision-making framework in responding to these challenges. 
Fundamentally, MOEA aids water managers by thoroughly quantifying the tradeoffs between competing 
objectives, allowing them to minimize risk and maximize benefits in their decision-making. 
 
As a part of the Truckee Basin Water Management Options Pilot Study (WMOP), Precision Water 
Resources Engineering (PWRE) worked alongside the United States Bureau of Reclamation (USBOR), 
Truckee Meadows Water Authority (TMWA), California Department of Water Resources (CADWR), 
Pyramid Lake Paiute Tribe (PLPT) and U.S. District Court Water Master of the Truckee River (collectively 
the Technical Team) to develop flexible reservoir flood control operational criteria without increasing 
downstream flood risk in the Truckee River Basin.  
 
The current governing flood control regulation criteria in the Truckee River Basin is the US Army Corps of 
Engineers’ (USACE) Water Control Manual (WCM). The WCM was adopted in 1985, and great 
advancements have been made in both river forecasting technology and gaging throughout the basin since 
its adoption. The purpose of the WMOP was to assess alternatives to current regulating criteria set forth 
in the WCM. The final study will be provided to USACE should a subsequent revision to the WCM be 
pursued. 
 
The Technical Team identified several objectives of this study including maximizing water supply, 
reducing flood risk, and enhancing environmental flows in the Truckee River. Furthermore, the Technical 
Team also had the goal of developing flood control regulations that would be implementable in real time 
operations and flexible to advancements in technology in the future. The MOEA provided a holistic 
technical framework that allowed the Technical Team to accomplish these goals.  
 
This paper documents the utilization of the MOEA in the WMOP Study and how it allowed for the analysis 
of flexible regulation criteria and the balancing of basin objectives in developing proposed revisions to the 
WCM. This paper will begin by providing a brief overview of the MOEA framework. Next, the paper 
discusses the methodology behind the analysis of the study. This includes details of how the Baseline 
Scenario was modelled, how the study employed FIRO to determine flood space requirements, and how 



the MOEA was applied to the WMOP Study. Lastly, the paper will provide a brief discussion of the results 
of the MOEA and how the Technical Team utilized the output of the MOEA to assess alternatives to flood 
control regulation criteria prescribed by the WCM. 
 
Truckee River Basin Overview 
 
The Truckee River Basin has a combination of five Federal reservoirs (Lake Tahoe, Martis Creek 
Reservoir, Boca Reservoir, Stampede Reservoir, and Prosser Creek Reservoir) and two private reservoirs 
(Donner Lake and Independence Lake) that reside upstream in California (see Figure 1). These reservoirs 
are operated for flood control and to meet a combination of municipal, industrial, agricultural, 
environmental, and recreational demands. The 2015 Truckee River Operating Agreement (TROA) also 
allows a variety of basin stakeholders to store water in the reservoirs so improvements to the WCM, which 
was not updated when TROA was implemented, have potential to benefit a wide variety of interests. 
 
The Truckee River flows from these reservoirs in California 120 miles downstream to its terminus 
Pyramid Lake (Rieker, 2010). The river crosses the California/Nevada border near Floriston, California 
and it flows through the Truckee Meadows and Reno, Nevada, where water is removed from the river 
through a variety of municipal and agricultural diversions. This region represents areas of major 
development in the basin, and the WCM defines operational flow targets in Reno that were developed 
specifically to protect this region and downstream from flooding.  
 

 
 

Figure 1. Map of the Truckee River Basin (U.S. Department of Interior, Bureau of Reclamation, 2015). 

  



MOEA Overview 
 
Multi-Objective Evolutionary Algorithms (MOEAs) are non-linear, stochastic optimization methods that 
can be used to identify the best compromise solutions along a path of potential policy alternatives given a 
set of defined objectives and decision variables. MOEA provides an intelligent, systematic process for 
developing a solution that balances the achievement of multiple (often competing) objectives. It provides 
users with quantitative information to use when evaluating tradeoffs (Reed et al., 2013). 
 

 
 

Figure 2. Interactions between the five main components of the MOEA 

 
Figure 2 provides a schematic summarizing the five main components of the MOEA and the interactions 
between them. Central to MOEA is the function, or an equation (simpler)/model (more complex) that is 
undergoing optimization. Decision variables, which represent the parameters that the MOEA will 
optimize, are input to the function by the MOEA. Objectives are output from the function and represent 
the performance of the function given an input set of decision variables. As the MOEA runs, the MOEA 
Search Algorithm intelligently selects new sets of decision variables to evaluate in the function by 
learning the relationship between decision variables and objective performances. The process of 
evaluating the function’s objective performances with new sets of decision variables is repeated many 
times until the MOEA converges on a solution. 
 

 
 

Figure 3. Illustration of two-dimensional Pareto-Front and Non-Dominated vs. Dominated Solutions (adapted from 
CADSWES, 2019) 

 
Due to the multi-objective nature of the optimization analysis, there is often a competing nature between 
different objectives (i.e., what is good for one objective is not always good for other objectives). Thus, the 
output from the MOEA, or optimal results, are not single solutions, but are instead represented by sets of 
“nondominated solutions” (also called “Pareto optimal points”). A nondominated solution is a 
solution that provides an optimal trade-off between objectives, in that no objective can be further 



improved without harming another objective. In contrast, a dominated solution is a solution where 
one of the objectives can be improved without harming any of the other objectives (i.e., there is no trade-
off to improve that objective), and thus, is not an optimal trade-off point. The collection of nondominated 
solutions is often referred to as the Pareto front. These concepts are illustrated in Figure 3 for a 
conceptual two objective (i.e., two-dimensional) problem where the objectives are to minimize both the x 
and y values. From this set of nondominated solutions, the “optimal solution” is determined through a 
more subjective analysis of the tradeoffs between objectives. 

 

Methodology 
 
This section discusses the methodology of how the alternative policies in the WMOP Study were modelled. 
The section begins with an overview of the Baseline Scenario of the study. Next, this section provides an 
overview of the “By a Model” Method (the application of FIRO to determine flood space requirements). 
Lastly, a discussion is provided on how the MOEA Framework was applied in the WMOP Study to model 
flood control regulating criteria alternatives.  

 

Baseline Scenario 
 
The Baseline Scenario in the WMOP Study was developed to model the Truckee River Basin under 
contemporary policy. This scenario utilized two RiverWare© models: the TROA Planning Model 
(Planning Model) and the TR Hourly River Model (Hourly Model). The Planning Model runs at a daily 
timestep, and its purpose in the Baseline Scenario is to provide modelling results necessary to quantify 
water supply and environmental objectives. The Hourly Model runs at an hourly timestep, and its purpose 
is to provide modelling information necessary to quantify the study’s flood damage mitigation objective. 
These models run in tandem where the TROA Planning model determines the daily water supply and 
storage implications of a scenario, and the TR Hourly Model determines the shorter-term flow routing 
implications. To consider flood scenarios larger than those found in the historical dataset, the study data 
set also routed a series of scaled hindcast events where historical precipitation forcings were scaled to 
produce the 100-yr, 200-yr and 500-yr recurrence interval flood hydrographs. 

 

“By a Model” Method: Using FIRO to Determine Flood Space 
Requirements 
 
One of the major goals of the WMOP Study was to develop flood control regulation criteria that would be 
flexible and adaptable to future advances in technology. In the context of the WMOP a methodology 
named the “By a Model” Method was developed to utilize probabilistic inflow forecasts provided by the 
National Weather Service California Nevada River Forecast Center (CNRFC) to make more efficient 
determinations of flood space requirements. This method was designed so that any future advances in 
forecasting technology would seamlessly integrate into the determination of increasingly efficient and 
intelligent flood space requirements.  
 
The following sections document the “By a Model” Method. This includes a summary of the method’s 
input data requirements and structure. Furthermore, the method’s algorithm is described in detail. This 
includes an example of how flood space requirements are derived from a forecast while balancing the 
accuracy of a forecast with acceptable levels of risk.  

 
Data Requirements 
 
CNRFC regularly produces ensemble forecasts of river flows for locations within the California/Nevada 
region utilizing their Ensemble Streamflow Prediction (ESP) technology. These forecasts are composed 
of 41 traces or “potential futures” of river flows at a particular location. To produce the traces, ESP 
technology utilizes a rainfall-runoff model that is initialized with current soil and snow conditions. This 
model is run with an ensemble of climate data which each trace being based in-part on climate from a 
historical year. The short-term outlooks are driven by short-term weather forecasts, then the traces blend 



into historical meteorology for the respective year as the weather forecast skill decreases. The ensemble of 
traces contained within a forecast allow computation of the risk/probability that the forecasted runoff will 
be within specified ranges.  
 
As input to the “By a Model” Method in the WMOP Study, CNRFC developed a dataset of daily 
hindcasts, or “re-forecasts", of history for several locations within the Truckee River Basin. Hindcasts 
are like forecasts, but they represent what the forecasts would have been in history utilizing current ESP 
technology. While hindcasts and forecasts are similar, it is important to draw a distinction between the 
two. Forecasts apply current modeling technology to predict future flows that have not yet occurred, 
whereas hindcasts are forecasts produced with current ESP technology for periods of time that have 
already occurred.1 In specific, CNRFC provided daily hindcasts for the period spanning water years 1990 
to 2020. Additional hindcasts were provided for February and March of 1986. The data availability of the 
hindcasts determined the period of record for the study. This set of hindcasts provided the ability to assess 
the relationship between forecasting skill and acceptable risk in determining flood space requirements in 
the Truckee Basin Federal reservoirs. This relationship and how it was balanced in the “By a Model” 
Method is detailed in the following sections. 

 
The Relationship Between Risk and Skill 
 
Fundamentally, ensemble forecasts (or hindcasts) are more accurate at shorter outlooks than longer 
outlooks, and the level of acceptable risk associated with flood information contained in a forecast should 
relate inversely to the outlook and accuracy of a forecast (Gwynn, 2022b). For example, if a large rain 
event is forecasted to occur at a 1-day outlook, there is a strong meteorologic signal that this event is 
highly likely to occur. The “By a Model” Method should respond to the accuracy in this forecast of the 
storm at a 1-day outlook by operating more conservatively and requiring sufficient flood space to mitigate 
impacts of the coming storm. If a similar rain event is forecasted at a 14-day outlook, this event could 
occur, but it is less certain to occur than in the case of the 1-day outlook, also there is additional time to 
evacuate flood space in the intervening days while the forecast becomes more certain. The flood space 
requirements determined by the “By a Model” Method are designed to respond to the reduction in skill of 
hindcasts with outlook. The method is engineered to allow this relationship to be optimized. That is, using 
the large dataset of hindcasts provided by CNRFC, the optimal relationship between hindcast skill and 
acceptable level of risk can be explored to develop flood control regulation criterion that will adequately 
protect against the storms. 

 

Volume Over Target Calculations 
 
The goal of flood control operations in the Truckee Basin is to maintain appropriate space in reservoirs to 
be able to store sufficient inflow to the basin to protect against downstream flooding. The goal of flood 
control operations of reservoirs is to store basin inflows that would otherwise cause the downstream Reno 
Gage to exceed a target of 6,500 cfs (otherwise known as the Flood Target Flow).2 This concept is reflected 
in the fundamental equation in “By a Model” Method to determine flood space: 
 

 𝑅𝐹𝑆 = ∑ max(𝐼 𝑡 − 𝑇𝑑𝑜𝑤𝑛𝑠𝑡𝑟𝑒𝑎𝑚 𝑡𝑎𝑟𝑔𝑒𝑡 𝑓𝑙𝑜𝑤 , 0)
h𝑖𝑔h 𝑓𝑙𝑜𝑤𝑠

∗ Flow to Volume Conversion
𝑡𝑓

𝑡=0     (1) 

 
In this equation, 𝑅𝐹𝑆 is the required flood space in units of acre-feet, 𝑰𝒕 is the hindcasted Reno 
unregulated flow at time t, 𝑻𝒅𝒐𝒘𝒏𝒔𝒕𝒓𝒆𝒂𝒎 𝒕𝒂𝒓𝒈𝒆𝒕 𝒇𝒍𝒐𝒘 is the Flood Target Flow at Reno (6,500 cfs), and 𝒕𝒇 is a 

given outlook (i.e., 10 days). This is like the method applied to determine the seasonal flood space 
requirement which utilizes this equation on seasonal historical inflows; the “By a Model” method applies 
the equation to ESP forecasts (Gwynn, 2022a).  
 

 
1 Other differences between hindcasts and forecasts exist but are not relevant to the scope of this paper. 
2 The target flow at the Reno Gage is under review, and this is a preliminary number that was chosen to be 
used in the study. 



As discussed above, there is a tradeoff between the collective accuracy of hindcasts versus the acceptable 
level of risk. To account for this, the “By a Model” Method assesses flood risk at varying outlooks by 
computing the volume of flood space that would be exceeded by a specified percentage of traces. This 
“exceedance percentage” is the percent of traces for which the flood space would be insufficient to store 
the inflows should that trace occur and is thus an estimate of the risk of filling all the flood space 
associated with having a specified volume of flood space. Note that this is an estimate of the risk 
associated with having sufficient flood space as the hindcasts (and all models and meteorological forecasts 
that they are based on) may have biases and inaccuracies based on the current state of the science. The 
percentage used can vary by outlook and be adjusted to meet the study objectives. To facilitate this 
computation, Equation 1 is applied to all traces of a hindcast at multiple outlooks. To provide a simple 
example, assume a hindcast for a given day is composed of ten traces. Equation 1 is applied to each trace 
of this hindcast at outlooks of 1, 2, 5, 7 and 14 days resulting in the Cumulative Storage over the Flood 
Target Flow summarized by Table 1. Note, implementation of the “By a Model” Method in the WMOP 
Study included outlooks up to 365 days to incorporate runoff information contained in forecasting into 
the methodology. 
 

Table 1. Example of applying the Cumulative Storage over Flood Flow Target calculation to a hindcast 

 

 
 

Exceedance vs. Outlook Curve: Balancing Hindcast Skill with Risk 
 
The risk assessment portion of the “By a Model” Method summarizes the results of the “Cumulative 
Volume over the Target Calculation” to a single, refined flood space requirement by selecting the 
cumulative volume at a specified exceedance percentage for each outlook that best meets the study 
objectives. These exceedance percentages are characterized by an “Exceedance Outlook” relationship to 
facilitate efficient optimization. The required exceedance then varies as a function of the outlook in a well-
defined manner. The parameterization of this exceedance-outlook curve is optimized by the MOEA to 
meet the study objectives. This defines how conservative the refined flood space requirement should be to 
give the desired improvements in storage available to water supply while ensuring that sufficient flood 
space is reserved to mitigate downstream flooding (i.e., meeting the study objectives). Figure 4 provides 
an example of a prototype Exceedance vs. Outlook Curve. This curve defines that at a 1-day outlook, the 
0% exceedance of the hindcasted 1-day Cumulative Storage over Flood Target Flow should be used in the 
determination of the flood space requirement. In other words, at a 1-day outlook, the most conservative 
(i.e., largest) forecasted volume for flood space requirements should be considered. In contrast, at the 14-
day outlook, the 60% exceedance of the hindcasted 14-day Cumulative Storage over Flood Target Flow 
should be considered in the determination of the flood space requirement. Intuitively, because there is 
less skill in and more time to reach a 14-day outlook than a 1-day outlook, a less conservative volume of 
flood space requirements is appropriate by this Exceedance vs. Outlook relationship. 
 

1-Day 2-Day 5-Day 7-Day 14-Day

Trace 1 0 0 5,000 15,000 15,000

Trace 2 0 1,000 4,000 10,000 11,000

Trace 3 100 1,500 3,000 12,000 12,000

Trace 4 0 0 2,000 12,500 12,700

Trace 5 0 0 2,000 12,500 12,500

Trace 6 0 200 3,000 11,500 11,500

Trace 7 50 100 1,000 10,000 10,000

Trace 8 500 2,000 5,000 6,000 7,000

Trace 9 0 500 1,500 11,500 11,500

Trace 10 0 0 0 10,000 11,000

Outlook (days)
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Figure 4. Example Exceedance vs. Outlook Relationship 

 
Applying the Exceedance vs. Outlook curve from Figure 4 to the Cumulative Storage over Flood Target 
Flow values for the example hindcast (see Table 1) results in values for required flood space by outlook 
shown in Table 2. The “By a Model” Method selects the required flood space for this hindcast based on the 
most conservative value defined by the Exceedance vs. Outlook curve. For example, this is associated with 
the required flood space calculated for the 7-day outlook of 11,500 acre-feet. 
 
Table 2. Required Flood Space calculations by outlook and risk, and the required flood space as calculated by the “By 

a Model” Method for the example hindcast 

 

 
 

The last step of the “By a Model” Method adds a factor of safety in the “By a Model” Method and is like the 
“Modified Hybrid EFO model” recommended in a similar project on the Russian River (Jasperse et al., 
2020). As a part of the WMOP Study, updated guide curves, known as Revised Guide Curves, for required 
flood space were developed using updated historical datasets and updated methods (Gwynn, 2022a). The 
“By a Model” Method applies a minimum value to the required flood space calculation determined by the 
Exceedance Vs. Outlook curve as a percentage of the Revised Guide Curve to maintain. That is, the 
required flood space, as calculated by the “By a Model” Method, will always be at least as large as a 
percentage of the flood space from the Revised Guide Curve. How this percentage is determined is 
discussed in the proceeding section. The following equation represents this interaction between the 
percentage of the Revised Guide Curve to maintain and the calculations for required flood space as 
determined by the hindcast data and the Exceedance vs. Outlook curve: 
 

𝑅𝐹𝑆𝐹𝑖𝑛𝑎𝑙 = 𝑀𝑎𝑥[% 𝑅𝑒𝑣𝑖𝑠𝑒𝑑 𝐺𝑢𝑖𝑑𝑒 𝐶𝑢𝑟𝑣𝑒 𝑡𝑜 𝑀𝑎𝑖𝑛𝑡𝑎𝑖𝑛 , 𝑅𝐹𝑆1, 𝑅𝐹𝑆2, 𝑅𝐹𝑆5, 𝑅𝐹𝑆7, 𝑅𝐹𝑆14, … ]         (2) 

 
In this equation, 𝑅𝐹𝑆𝐹𝑖𝑛𝑎𝑙  represents the final required flood space as determined by the “By a Model” 
Method and 𝑅𝐹𝑆𝑛 represents the required flood space calculated utilizing the Exceedance vs. Outlook 
relationship at an 𝑛 day outlook.  

 

Parameterization of the Exceedance vs. Outlook Relationship 
 

Outlook 1-Day 2-Day 5-Day 7-Day 14-Day

Exceedance 0% 20% 40% 50% 60%

Required Flood 

Space by Outlook 

(acre-feet)

500 1,100 3,000 11,500 11,300 11,500

"By a Model" 

Method Required 

Flood Space



As described above, the Exceedance vs. Outlook relationship is designed to determine a flood space 
requirement from an RFC Ensemble.  
 
To accomplish this, the Exceedance vs. Outlook relationship was parameterized by the following equation: 
 

𝐸𝑥𝑐𝑒𝑒𝑑𝑎𝑛𝑐𝑒 = 𝐶 + 𝐴(𝑂𝑢𝑡𝑙𝑜𝑜𝑘)𝐵     (3) 
 

A, B, and C in Equation 3 are coefficients characterizing the shape of the exceedance outlook curve. By 
constraining the B coefficient to values greater than zero, the resulting exceedance percentage will be 
increasing as a function of outlook. Thus, for smaller outlooks, more conservative flood space 
requirements should be implemented, in contrast to longer outlooks, whose forecasted flood space 
requirements are more uncertain, and therefore should not require highly conservative flood space 
requirements long in advance of their materialization. 
 
In total, the “By a Model” Method required four parameters (see Table 3). The MOEA optimized each of 
these parameters through analysis of what configuration best met objectives related to water supply, flood 
risk mitigation, and environmental flows. 
 

Table 3. Parameters required by the “By a Model” Method 

 

 

 
Modelling Alternatives using MOEA 
 

 
 

Figure 5. Schematic summarizing the configuration of MOEA Components in the WMOP Study 

 
This section describes how the MOEA was set up in the WMOP Study. Figure 5 provides a high-level 
schematic that summarizes the configuration of each MOEA component. The proceeding sections 
describe the configurations in detail. Refer to MOEA Overview for more generic descriptions of MOEA 
components and the interactions between them. 

 

Decision Variables

Exceedance Coefficient A

Exceedance Coefficient B

Exceedance Coefficient C

Percentage of Revised Guide 

Curve to Maintain

"By a Model" 

Method



MOEA Function in the WMOP Study 
 
The MOEA Function in the WMOP Study was configured to utilize the Alternative Model, an identical 
modelling framework to the Baseline Scenario (see Baseline Scenario) except for a few key changes 
limited to those necessary to allow for alternative flood control regulating criteria to be modelled. Among 
these changes was implementing the “By a Model” Method for determining flood space requirements into 
the Planning Model as opposed calculating flood space requirements via methodology prescribed in the 
current WCM. 

 

MOEA Objectives in the WMOP Study 
 
The objectives in the WMOP Study can be summarized as water supply, flood risk mitigation, and 
environmental flows objectives.3 To evaluate model performance, calculations were developed for each 
objective of the WMOP Study. The MOEA required that the result of the calculation for each objective was 
a single number that accurately represented an objective’s performance for an entire model run. Table 4 
summarizes the names of objective calculations developed for the three main objectives in the study. 
 

Table 4. Summary of the main objective calculations in the WMOP Study. 

 

 
 

MOEA Decision Variables in the WMOP Study 
 
The decision variables utilized in the MOEA of the WMOP Study included the four parameters associated 
with the “By a Model” Method for determining flood space. Refer to Table 3 for a list of these parameters. 

 

MOEA Search Algorithm in the WMOP Study 
 
The evolutionary algorithm employed in the MOEA of the WMOP Study was the Non-dominated Sorting 
Genetic Algorithm II (NSGA-II). The Technical Team selected this algorithm for two primary reasons: 
 

(1) It is well-established and has been found to be successful and dependable in civil engineering 
applications. 

(2) It was technically feasible to implement. 
(3) It provided run-time efficiency by supporting function evaluations in parallel. 

For more documentation on NSGA-II, refer to the referenced paper Multi-Objective Evolutionary 
Algorithm (MOEA) Tool Utilization and Development (Precision Water Resources Engineering, 2022). 

 

MOEA Output in the WMOP Study 
 
The output of the MOEA in the WMOP Study was configured to be 150 non-dominated solutions. This set 
of solutions represented the space of optimal solutions determined by the MOEA. From this set of 150 
non-dominated solutions, the Technical Team would deliberate on the tradeoffs between objectives in the 
study and ultimately select the set of decision variables associated with the “By a Model” Method that 
would represent the optimal flood control regulating criterion that balanced the tradeoff between water 
supply, flood risk mitigation, and environmental flow objectives in the study. 
 

 
3 Note, there were more than 3 objectives for the MOEA in the WMOP Study. For the sake of simplicity, 
the objectives discussed in this paper are limited to three of the main objectives. 

Objective Calculation Name

Water Supply Average Annual Volume for Floriston Rate

Flood Risk Mitigation Root Mean Squared Flow Over the Flood Target

Environmental Flows Average Annual Volume for Flow Regime



The proceeding sections discuss the results of the MOEA and how the Technical Team determined the 
optimal flood control regulating criteria utilizing its results. 

 
MOEA Results Overview 

 
The MOEA evaluated the Alternative Model 3,000 times, and once completed, it output a set of 150 non-
dominated solutions (referred to as MOEA Scenarios). The results discussion of the MOEA is divided into 
two sections. The first provides an overview of the potential benefits to stakeholder objectives represented 
in the MOEA Scenarios. The second provides a discussion on the observed tradeoffs between the 
objectives. 
 

Potential Benefits to Stakeholder Objectives 
 
Table 5 provides a comparison between the objective performances of Baseline Scenario and the best 
performing MOEA Scenario for each objective. In this table, smaller values signify better objective scores.  
 
Table 5. Comparison of objective performances between Baseline Scenario and the best performing MOEA Scenario 

for each objective 

 

 
 
The Average Annual Volume for Flow Regime objective showed a 1,009 acre-feet improvement in the best 
performing MOEA Scenario over the Baseline Scenario for this objective. This is equivalent to an 
additional 37,000 acre-feet of storage being available in the 37-year model run of the MOEA Scenario to 
meet environmental flow targets over the Baseline Scenario. Similarly, yet to a lesser extent, the 
maximum improvement shown by MOEA Scenarios over the Baseline for the Average Annual Volume for 
Floriston objective was 300 acre-feet. Equivalently, the best performing MOEA Scenario shows an 
additional 11,100 acre-feet of water available to meet the Floriston Rate Target over the 37-year model 
run.  
 
The benefits for both objectives were realized in the modelling in a select few years in the of the period. 
For example, of the 37,000 acre-feet of additional storage available to meet environmental targets in the 
37-year model run, over 15,000 acre-feet was accumulated in water year 2011. This additional storage 
persisted in the system until the drought year of 2015 when it was used to meet environmental flow 
targets for almost two additional months (see Figure 6). 
 



 
 

Figure 6. Example environmental benefits of the best performing MOEA Scenario over the Baseline Scenario  

 
 
The maximum improvement shown by the non-dominated solutions over the Baseline Scenario for the 
RMS Flow over Flood Target objective is 21,543 cubic feet per second (cfs). The best performing non-
dominated solution for this objective represented significant flood risk mitigation, particularly in reducing 
peaks flows of flood events and the amount of time the flows at the Reno Gage were above the Flood 
Target Flow of 6,500 cfs. 
 

Tradeoffs Between Study Objectives 
 
Figure 7 and Figure 8 Error! Reference source not found.illustrate the tradeoffs between objectives 
by comparing objective scores for MOEA Scenarios against one another. The 2-dimensional Pareto Front 
between these two objectives has been estimated in these plots by the red line. As depicted by these two 
plots, there exists a well-defined tradeoff between both the environmental and water supply objectives 
with the flood damage’s objective. While this behavior was anticipated, the MOEA provided a way to 
quantify these tradeoffs which aided in the selection process.  
 

 
 

Figure 7. Non-dominated solution objective performances from the MOEA and Baseline Scenario Run for the 
Average Annual Volume for Flow Regime (i.e., environmental objective) and RMS Flow over Flood Target (i.e., flood 

objective) objectives. The Pareto Front between the two objectives is estimated by the red dashed line. 

 
 



 
 

Figure 8. Non-dominated solution objective performances from the MOEA and Baseline Scenario Run for the 
Average Annual Volume for Floriston Rate (i.e., water supply objective) and RMS Flow over the Flood Target (i.e., 

flood objective) objectives. The Pareto Front between the two objectives is estimated by the red dashed line. 

 

Overview of Selecting the Optimal Alternative 
 
The Technical Team needed to select one preferred alternative utilizing the 150 MOEA Scenarios provided 
by the MOEA. This process was completed in three phases that allowed for efficient elimination of several 
less desirable MOEA Scenarios such that stakeholders could focus detailed analysis and discussion on a 
curated, short list of “best” MOEA Scenarios from which to pick one. The following subsections document 
these three phases and provide a summary of how the best MOEA Scenario influenced the preferred 
alternative of the WMOP Study. 

 

Initial Filtering of MOEA Scenarios Using Parallel Axis Plots 
 

 
 

Figure 9. Parallel Axis Plot of objectives performances of non-dominated solutions (blue and light grey) and the 
Baseline Scenario (Green) for the three objectives. Scenarios that remained after initial filtering are colored grey. 

 
The goal of phase one of the selection process was to filter down the MOEA Scenarios as much as possible 
from a high-level view of their performances. The Parallel Axis Plot, shown in Figure 9, offered an efficient 
means by which to accomplish this. Each line in this plot that connects and crosses the vertical axes, 



referred to as scenario lines, represents either non-dominated solutions (colored light grey or blue on the 
plot) or the Baseline Scenario (colored green on the plot). The vertical axes each represent an objective in 
the MOEA, and performance is indicated by where the scenario lines cross an objective’s axis. The plot is 
oriented so that down on a vertical axis is always a better score for that objective. 
 
The blue lines on the Parallel Axis Plot represent the MOEA Scenarios that were selected by the Technical 
Team during Phase 1 of the selection process. These were selected by removing the scenarios that 
performed poorly for any objective while trying to keep some of the best performing scenarios for each 
objective. All scenarios that were selected as a part of the first phase of the selection process performed 
better than the Baseline Scenario for each of the objectives. 
 

Additional Stakeholder Screenings of MOEA Scenarios 
 
The second phase of the analysis involved a more detailed review of the remaining 30 MOEA Scenarios 
displayed in Figure 9 to determine the top four best MOEA Scenarios. During this phase, each agency 
represented in the Technical Team was required to determine their 20 best MOEA Scenarios evaluating 
their own subjective decision criteria for what represented “acceptable” and “better” tradeoffs between the 
study objectives. Afterward, a small committee consisting of at least one representative from each agency 
met to determine the best MOEA Scenarios agreed upon by all cost share partners. The four scenarios 
selected by this committee are summarized in Table 6. 

 
Table 6. Summary of the performances of the four MOEA Scenarios selected by the small committee during the 

second phase of the selection process.  

 

 
 

Selecting the Preferred MOEA Scenario  
 
After agreeing upon the top 4 MOEA Scenarios, the Technical Team met at the WMOP Select Preferred 
Alternative Workshop in March of 2023 to conduct an in-depth review of time series results associated 
with each the four remaining MOEA Scenarios to determine the best performing scenario. Ultimately, the 
Technical Team selected C as the best performing MOEA Scenario for the following three reasons. 
 
Central to the decision-making process at the workshop were stakeholder concerns with fluctuations in 
flood control capacity observed in the MOEA Scenarios. Figure 10 provides an example of these 
fluctuations by depicting simulated results of Prosser Creek Reservoir Flood Control Capacity for the four 
MOEA Scenarios and the Baseline Scenario in 2017, a very wet year. The simulated results show that it 
was not uncommon to see large spikes in Prosser Flood Space Requirements in 2017. The “spikiness” 
shown in MOEA Scenarios in Figure 10 are caused by short lead times of storms in the forecast. Storms 
typically do not show up weeks in advance in the forecasts; rather, their lead time in the forecasts is much 
shorter, sometimes on the order of days. As a result, flood space requirements determined by the “By a 
Model” Method react quickly and dramatically to the changes in forecasts that occur at shorter lead times. 
 

Model Name

Annual Average 

Volume For FR

(acre-feet)

Average Annual Volume 

For Flow Regime

(acre-feet)

RMS Flow Over 

Flood Target

(acre-feet)

A -263,287.08 -149,020.48 152,978.25

B -263,293.83 -148,860.67 149,820.18

C -263,298.24 -148,956.60 154,776.49

D -263,287.18 -149,042.15 154,546.62



 
 

Figure 10. Prosser Flood Control Capacity for the Baseline and top four MOEA Scenarios during runoff of 2017. 

 
A major concern with these fluctuations was its impact on fish species in the Truckee River. For example, 
if one of these fluctuations in flood control capacity on Prosser Creek Reservoir occurred on a day when 
the reservoir was close to full, strict adherence to regulation criteria would force Prosser Creek Reservoir 
operators to evacuate its flood storage immediately, and the reservoir would begin evacuating water at an 
exceedingly high rate. These types of fluctuations in river flows would have negative impacts on fish 
species in the river.  
The Technical Team determined MOEA Scenario C to be a better scenario than the other MOEA Scenarios 
because it showed the least amount of fluctuation in flood space requirements and, therefore, variability 
in river flows. 
 

Table 7. Simulated peak flow at the Reno Gage for the January 1997 100-year Scaled Flood Event. 

 

 
 
A second observation that further substantiated C as the best performing MOEA Scenario was its 
performance in a simulated January of 1997 100-year Scaled flood event. MOEA Scenarios B and C 
reduced the simulated peak flows at the Reno Gage for this event by over 4,000 cfs (see Table 7). 
According to the stakeholder flooding expert, these differences in peak flow represent the difference 
between flooding a large industrial park in the region and introducing chemical contamination into the 
river. Note, while MOEA Scenario B showed similar benefit in reducing peak flows for this event, it was 
eliminated from consideration due to inferior performance for other basin objectives outside the scope of 
this paper. The third and final observation that led to C being selected was that it the best among the four 
scenarios at the water supply objective (Annual Average Volume for FR). 
 

Overview of the Preferred Study Alternative 
 
One of the goals of the WMOP was to develop flood control operational criteria that not only improved the 
stakeholder objectives in the basin but was also operationally feasible to implement. While the Technical 
Team did arrive at a final preferred MOEA Scenario, concerns about the feasibility of implementing the 
scenario, specifically in relation to issues surrounding fluctuations in flood space requirements discussed 
previously, prevented this scenario from becoming the preferred alternative for the study. Namely, two 
concerns were raised with the fluctuation issue in addition to environmental concerns. The first was how 
“feasible” it would be to physically make the release changes called for by the “By a Model” Method during 
a real flood event. Second, reservoir operators in the basin were concerned with liability of operating to 
fluctuating forecasts because it could result in situations where: 

Scenario Baseline A B C D

Peak Reno Gage Flow (cfs) 19,215.4 17,507.3 15,245.3 15,245.3 17,507.3



1. Operators may be forced to needlessly spill stakeholder water downstream. 

2. Operators may not have evacuated enough flood space to protect against a flood event. 

As a result, the Technical Team developed the preferred alternative for the study as a slight modification 
to MOEA Scenario C. The modification was designed to (1) leverage the benefits to environmental flows 
and water supply of using the “By a Model” Method, and (2) smooth over fluctuations in the required 
flood space to avoid negative impacts of flow variability. The results from the preferred alternative are still 
being developed and, therefore, excluded from this report. 
 

Conclusion 
 
The Technical Team of the WMOP successfully collaborated to develop an alternative flood control 
regulation criterion that leverages the information contained within ensemble forecasts to maximize 
water supply and enhance environmental flows while protecting against floods in the Truckee Basin. 
While issues lead times of storm events in the ensemble forecasts manifested, at times, in large 
fluctuations of forecasts during wet periods, methodologies were set in place to allow for the regulation 
criterion to be flexible and adapt with future advancements in forecasting technology. The MOEA 
provided the necessary technical infrastructure from which to leverage the skill in ensemble forecasts to 
meet stakeholder objectives more effectively. The technical effort completed as a part of the WMOP will 
result in a proposed revision of the USACE WCM for the Truckee River Basin. 
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