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Abstract 
 

Inundation models that realistically simulate hydrologic processes are in demand for post-
wildfire flood susceptible regions like Southern California where precipitation occurrences, 
increasing population densities, fire-prone vegetation, and steep terrain combined with 
wildfires, trigger flooding events. In Santa Barbara and Ventura Counties following the 2017 
Thomas Fire, on January 9th, 2018, an intense atmospheric river flood resulted in a series of 
destructive water and debris flows causing major damage to life and property. This study utilizes 
the physics-based Gridded Surface Subsurface Hydrological Analysis, GSSHA, a watershed 
numerical model to simulate the flood events in the San Ysidro Creek watershed. To assist in 
reducing uncertainties affecting model predictions, a parametric sensitivity analysis of the post-
fire runoff process was applied using the “Shuffled Complex Evolution”, SCE optimization 
algorithm. To reduce uncertainty, two methods of parameterization were applied: parameter 
transfer and optimization. It was found feasible to establish a transfer of parameters from a 
nearby, comparable watershed based on a previous study conducted by Pradhan and Floyd 
(2021). The key parameters that were identified in the sensitivity analysis were manning’s 
roughness and the hydraulic conductivity reduction factor. Although sensitive to both 
parameters, the model was found to be significantly more sensitive to the change in hydraulic 
conductivity reduction factor. Both types of parameterization found that post-fire simulations 
compared well to the observed data for the 09 January 2018 rainfall event. The post-wildfire 
numerical modeling approach provided an improvement to the existing state-of-practice for 
predicting post-wildfire inundation risks. Understanding post-fire hydrologic processes and 
improvements in modeling is crucial in providing a framework for emergency assessments and 
therefore potentially reduce the impacts of post fire flooding on landscapes, infrastructure (e.g., 
roads, reservoirs), and communities. 
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Introduction  
 

Background 
 

In recent decades, wildfires have increased in severity and frequency making it a major concern 
in the western US and other parts around the world. Post-wildfire storm events frequently create 
large runoff volumes, sometimes in the form of debris flows (water-laden slurries of soil and 
rock that move rapidly through channels in steep landscapes), that cause damage to life, 
property, infrastructure (e.g. reservoir), and environment (air, land, water) (Cannon et al., 
2008; Barnhart and Jones, 2021; Floyd, 2021). Predictions of post-wildfire flooding and debris 
flows are crucial to be prepared for emergency response after a wildfire. Currently, there is a 
demand for a physics-based hydrological framework that requires accurate parameterization of 
soil-hydraulic properties to reduce model uncertainty (Lane et al., 2006; Cannon and DeGraff, 
2009; Moody, 2013). Southern California is a region in the US that can particularly benefit from 
improvements in post-wildfire model parametrization due to the frequency of wildfires in the 
area (Ebel and Moody, 2020). Wildfire in chaparral-vegetated basins affects hydrology, soil 
properties, and slope stability and causes an increase in the rate of sediment production and 
yield from hillslopes and in sediment yield from rivers (Florsheim et al., 1991; Scott and 
Williams, 1978; Rice, 1974). Uncertainty in future climate change, the existence of fire-prone 
vegetation along steep terrain and increasing human activity in the area all contribute to 
Southern California’s predominantly high risks for post-wildfire floods and debris flows.  

 
For example, the 2017 Thomas Fire, one of the largest fires in modern California history, 
demonstrated this need for readily available hazard assessment tools, after it burned 440 square 
miles through Santa Barbara and Ventura Counties. Following the fire, on January 9th, 2018, an 
intense atmospheric rainfall event occurred with an intensity of 0.2% to 0.5% annual percent 
chance exceedance, triggering a series of destructive debris flows that mobilized 680,000 m3 of 
sediment in the Santa Ynes Mountains. This resulted in 23 fatalities, 167 injuries, 408 damaged 
homes, and $1.3 Billion in damages (Kean et al, 2019). Before the debris-flow event, the best 
available predictions on potential inundation came from county, state, and federal floodplain 
maps (e.g., US Federal Emergency Management Agency [FEMA] 100-year floodplain). While 
valued, the floodplain maps do not account for fundamental differences in flow dynamics 
between water flows and debris flows (Kean et al, 2019). Hence, numerical modeling is a tool 
that can be used to predict post-wildfire inundation and debris flows. A numerical model that 
may support post-fire parametrization demands is U.S. Army Corps of Engineers (USACE) 
GSSHA, Gridded Surface Subsurface Hydrological Analysis, as it was designed to correctly 
identify and realistically simulate these two important hydrologic processes in watersheds 
(Downer and Ogden, 2006; Pradhan and Floyd, 2021). In this study, GSSHA was implemented 
to inform the potential for mitigation of the effects from inundation and debris-flow disasters in 
the future.  
 

 Several models and techniques have been available to predict post-fire runoff, varying from 
complexity and usability, and different modeling approaches may be suitable based on the 
watershed size. According to a survey on Burned Area Emergency Response (BAER) models, the 
five most common post-fire hydrologic models are empirical, semi-empirical, and semi-
distributed: the Rowe Countryman and Storey (RCS), United States Geological Survey (USGS) 
Linear Regression Equations, USDA Windows Technical Release 55 (USDA TR-55), Wildcat5, 
and U.S. Army Corps of Engineers (USACE) Hydrologic Modeling System (HEC-HMS) 
(Kinoshita et al., 2014). Hydrologic models are fundamental tools in the decision-making 



process for emergency response, yet, they were not designed for post-fire conditions, so they 
need to be adjusted accordingly (Zema, 2021). A better understanding of precipitation, 
infiltration, erosion, and runoff will lead to improved predictive modelling capabilities. The 
existing hydrological models should be specifically adapted to burned conditions with a reliable 
simulation of soil changes due to fire. Past models have limited their evaluations to existing 
models underburned and unburned conditions (Lopes et al., 2021).  Therefore, there is a 
necessity for the development of fire-affected soil hydraulic functions and special conditions 
related to wildfires (Moody, 2013). 

 
Parameters are part of a numerical model structure that are used to characterize the 
environment that is being simulated. For example, in a watershed model, it is important to have 
different parameters such as soil type, initial moisture content, and infiltration rates for 
accurately simulating surface runoff. By setting these parameters as closely as possible to what 
exists in the prototype, the model results are more likely to resemble events that occur in the 
real world. Poor identification of some of the parameters as well as errors in the model structure 
are the main contributors to the model uncertainty. Several watersheds around the world are 
either ungauged or poorly ungauged, therefore many regionalized studies provide a relationship 
between parameters of the model and the catchment descriptors so that parameters are 
transferable to similar regions (Pradhan et al., 2008). A proper and detailed analysis of the 
parameters of a model and the model structure thereof can help estimate and reduce the 
uncertainties that can affect model predictions. To this end, a sensitivity analysis and estimation 
of predictive uncertainty have become central research topics in the hydrological modeling 
community (Abebe et al., 2010). The work by Spear and Hornberger (1980), the Generalized 
Likelihood Uncertainty Estimator (GLUE) approach of Beven and Binley (1992) and the 
Shuffled Complex Evolution (SCE) method of Duan et al. (1992) are among others for automatic 
calibration using optimization algorithms.  

 

The purpose of this study was to implement GSSHA to model pre- and post-fire conditions that 
allowed to locate dominant processes in relation to the model structure development for post-
wildfire hydrologic modeling. A sensitivity analysis was performed using the SCE optimization 
algorithm. 

 

 

Objectives and Approach: 
 

The objectives of this research are to a) utilize GSSHA to model pre- and post-fire conditions, b) 
identify the most dominant parameters in relation to the model structure including relevant 
physical processes (i.e. change in surface roughness, infiltration, etc.) in post-wildfire hydrologic 
modelling, c) perform a sensitivity analysis and analyze and assess if optimized parameters and 
parameter dominance can be generalized. To reduce uncertainty, two methods of 
parameterization were applied: parameter transfer and optimization. First, a transfer of 
parameters of a nearby watershed with similar physical properties were used to simulate pre- 
and post- fire scenarios for the Santa Barbara watershed. Then, the SCE optimization algorithm 
was applied to calibrate a hydrologic parameter. By applying both methods of parameterization, 
generalization of the optimized parameter values were assessed by the validity of those 
parameter conditions in nearby watersheds under similar conditions. 

 



 

Methodology 
 

Intense wildfires reduce vegetation canopy and catalyze several changes to soil properties that 
vary spatially and alter the soil profile (Moody, 2013). Infiltration rates are a function of various 
factors where hydraulic conductivity plays a critical role (Ebrahimian et al., 2019).  Water 
distribution and flow in the vadose zone, are strongly influenced by the intrinsic properties of 
the soil matrix (John and Fuentes, 2021). Chemical and physical changes to the soil structure 
affect infiltration and hydraulic conductivity, and a reduction in vegetation affects surface 
roughness. Accordingly, a sensitivity analysis of hydraulic conductivity and surface roughness 
using GSSHA were analyzed using the SCE optimization algorithm and the identification of the 
model parameters were analyzed in relation to model structure development for post-wildfire 
hydrology.  

 

GSSHA represents a fully coupled surface water/groundwater simulator with sediment transport 
capability. The model can simulate different types of runoff generation mechanisms including 
the infiltration excess mechanism defined by Richards’ equation and the Green and Ampt 
method (1911). Numerous free surface flows are unsteady and non-uniform where spatial and 
temporal changes of water stages and flow discharges need to be determined (Leon, 2013).  
Channel routing in GSSHA uses an explicit solution of the diffusive wave equation (Julien and 
Saghafian 1995). Recent developments in GSSHA also include post-wildfire runoff generation 
mechanisms. In addition, the model has a robust transport mechanism that includes runoff 
routing coupled with soil erosion, transport, and deposition. This study included runoff 
generation and routing mechanisms in the model development process as well as the model’s 
structural and parametric analysis process.  

  

At times, numerical models contain parameters that cannot be measured directly but only be 
inferred by a calibration process that adjusts values to match the model to the real system it 
represents (Abebe et al., 2010; Madsen, 2000). Traditional calibration procedures are labor 
intensive and involve frequent manual adjustments. Therefore, automatic methods for model 
calibration have become a common practice. A powerful, efficient procedure is the Shuffled 
Complex Evolution (SCE) method, a global optimization algorithm, initially developed by Duan 
et al. (1992). Various case studies have demonstrated that the SCE algorithm is consistent and 
efficient in locating optimal model parameters of a hydrological model (Vrugt and Bouten, 
2003).  SCE is based on four concepts: (1) combination of probabilistic and deterministic 
approaches; (2) clustering- shuffling of complexes and information sharing; (3) systematic 
evolution of a complex of points spanning the space, in the direction of global improvement; and 
(4) competitive complex evolution (Duan et al., 1992). 

 

Hydrologic Processes  
 

Understanding hydrologic processes of a watershed is not possible with only rainfall (input) and 
discharge (output) data as many processes may lead to comparable hydrographs. Rainfall and 
discharge, alone, do not provide adequate information of hydrologic response. Therefore, the 
identification of runoff generation and routing processes requires further investigation within 
the catchment basin to accurately characterize dominant water flow pathways (Latron and 
Gallart, 2008). In this study, runoff generation and routing processes are examined. 

 



 

Runoff Generation:   
 

Runoff occurs due to excess precipitation that flows until it reaches streams, rivers, and oceans 
and varies within time and space. Critical controls for runoff generation are precipitation 
intensity, duration of precipitation, and infiltration/storage capacity of the soil (Tindall and 
Kunkel, 1999). Following a high intensity wildfire, runoff can significantly increase through a 
loss of vegetation precipitation interception canopy (Floyd, 2021). Wildfires change infiltration 
soil properties, sometimes making the soil hydrophobic (water-repellent). Therefore, it is critical 
to observe infiltration and how it relates to changes in burn conditions.  

 

Infiltration:   
 

Infiltration is the process whereby rainfall and ponded surface water seep into the soil due to 
gravity and capillary suction. Green and Ampt (1911) developed a simple infiltration model that 
is theoretically based on Darcy’s Law with physically significant parameters that can be 
computed from soil properties. Water is assumed to enter the soil as a sharp wetting front. 
Precipitation on initially dry soil quickly infiltrates due to capillary pressure and as rainfall 
continues, the ground becomes saturated and the infiltration rate will decrease until it 
approaches the saturated hydraulic conductivity of the soil. Infiltration rate is a function of 
hydraulic conductivity, pressure head, total porosity, effective porosity and saturation, and 
cumulative infiltration depth and is expressed as: 

                                         𝑓(𝑡) = 𝐾 [
ℎ𝑝∆𝑝0

𝐹(𝑡)
+ 1]                                                                                                 (1) 

 

Where: f(t) = infiltration rate at time t 

K = hydraulic conductivity 

Hp = pressure head for wetting at the wetting front 

Po = total porosity 
Poi = initial water content 

Por = residual water content 

Poe = po - por = effective porosity 

Se = poi/poe = Effective saturation 

△po = po- poi = poe - Sepoe  = (1- Se)poe = change in total porosity 

F(t) = cumulative infiltration depth at time t 

 

Post-fire Condition:   
 

Accounting for changes in infiltration with changing burn severities is valuable for accurately 
predicting hydrological response. Pradhan and Floyd (2021) developed a post-fire condition 
formulation that includes multiplying factors, based on the physics based Green & Ampt 
distributed vadose zone infiltration process, which are explicitly linked to burned severities, to 
reduce an unburned soil hydraulic conductivity. Accordingly, the multiplying factors 
incorporate soil hydraulic conductivity reduction factor, and burned severity factor as follows: 

 

            𝑘𝑏𝑢𝑟𝑛𝑒𝑑 = 𝑅𝐹𝑘 ∙ 𝐵𝐷𝐹 ∙ 𝑘𝑢𝑛𝑏𝑢𝑟𝑛𝑒𝑑                                                                                        (2) 



Where: kburned  = soil hydraulic conductivity at burned condition  

              RFk = Reduction Factor of soil hydraulic conductivity under burned condition 

 BDF = Burn Degree Factor 

 kunburned = soil hydraulic conductivity at normal unburned condition 

In calibration, the reduction factor (RFk) was considered from 0.05 to 0.90 (95% to 10% 
reduction range).  

Routing:   

 
Routing is essential in estimating the propagation of flood from upstream to the downstream of 
a river, lakes, and reservoirs. Understanding routing processes can help predict the hydrograph 
shape following rainfall events in a watershed. Hydraulic or distributed routing is based on the 
solution of partial differential equations of unsteady open-channel flow, and the equations used 
are the Saint-Venant equations. The hydraulic models require gathering a lot of data to solve the 
equations numerically. GSSHA uses the diffusive wave equation to model 1-D channel and 2-D 
overland flow routing and requires surface roughness to be applied at every cell grid to relate to 
flow rate. 

Diffusive Wave: 

 

Channel routing in GSSHA is simulated using an explicit solution of the diffusive wave 
approximation from the Saint-Venant Equations which combines the continuity and momentum 
equations. Since it is a non-linear equation, it requires numerical methods and large quantities 
of measured data. The diffusive wave is valid when the inertial acceleration is less than gravity, 
friction, and pressure terms, primarily where there is subcritical flows, with low Froude values: 

Continuity  

Conservation form   
𝜕𝑄

𝜕𝑥
+

𝜕𝐴

𝜕𝑥
= 0                                                                       (3) 

Momentum 

Conservation form 
1

𝐴

𝜕𝑄

𝜕𝑡
+

1

𝐴

𝜕

𝜕𝑥
(

𝑄2

𝐴
) +

𝜕𝑦

𝜕𝑥
 − 𝑔(𝑆0 − 𝑆𝑓) = 0                                     (4) 

The diffusive wave model (also known as the non-inertia model) is written as: 

𝑔
𝜕𝑦

𝜕𝑥
 − 𝑔(𝑆0 − 𝑆𝑓) = 0                                                                (5) 

Where: x = longitudinal distance along the channel or river  

              y = depth of flow  

                g = acceleration due to gravity  

               S0 = channel bottom slope  

                Sf = friction slope 

Surface Roughness: 

 Water on the soil surface that neither infiltrates nor evaporates will pond on the surface, it can 
also move from one grid cell to the next as overland flow. Overland flow in GSSHA employs the 
same methods described for 1-D channel routing, except with calculations made in two 
dimensions. Numerical models such as GSSHA implement Manning’s equation to relate surface 
roughness to flow rate: 



𝑄 =
1

𝑛
𝐴𝑅

2

3𝑆𝑓

1

2                                                                           (6) 

Where: A = channel flow cross sectional Area 

 P = wetted perimeter 

 R = 
𝐴

𝑃
 = hydraulic radius  

 Sf = friction slope 

 n = Manning’s roughness coefficient 

Surface roughness is an important parameter as it controls runoff on hillslopes and in channels 
through the frictional resistance parameter (Moody et al., 2013). 

Parameterization: 

 

Providing adequate information of the physical processes of a system to model and defining 
parameter values for a hydrologic model application (i.e., parameterization) are crucial and 
difficult tasks. Generally model applications use a combination of measured, estimated, and 
optimized parameter values (Malone et al., 2015). Parameterization is critical in order to avoid 
methodological problems at the subsequent phases of model calibration and validation. 
According to Refsgaard and Storm (1996), parameter values should be defined from as much 
available field data as possible, for the parameters subject to calibration physically acceptable 
ranges should be estimated, and the number of calibrated parameters should be kept low.  

In lumped conceptual models, parameters do not have a physical meaning, therefore 
parametrization is not restricted to physical boundaries. By definition, a distributed physically 
based model, such as GSSHA, contains parameters that can be assessed from field 
measurements (Feyen et al, 2000). Due to the Thomas wildfire following intense rainfall, 
parameters were not directly assessed and therefore require particular calibration and 
validation. Fortunately, a similar study was assessed in a nearby watershed in southern 
California (Pradhan and Floyd, 2021), therefore parameters can be transferred accordingly. For 
redundancy, the two methods of parameterization in this study are parameter transfer and 
optimization. 

Parameter Transfer: 

The Santa Barbara watershed were modeled after the Arroyo Seco watershed due to its 
proximity and similarities (Pradhan and Floyd, 2021). Geographic coordinates of the watersheds 
are shown in Table 1. The watershed is located in Southern California, 82 miles away from the 
Santa Barbara watershed (Figure 1) and is part of the Transverse Range. Both studies (Arroyo 
Seco and San Ysidro Creek) were based on event-based simulations. 

Table 1.Geographic coordinates for each watershed. 

Watershed Latitude Longitude 

San Ysidro Creek 34o29’08” North 119o36’03” West 

Arroyo Seco 34o13’20” North 118o10’36” West 

 



 

Figure 1. Distance between San Ysidro and Arroyo Seco watersheds located in Southern California. 

The Arroyo Seco watershed was calibrated using the 2008 National Land Cover Database 
(NLCD) prior to the fire (Figure 2). According to the 2008 NLCD, San Ysidro Creek had a 
similar land use type for the burned portion of the watershed (Figure 3). The San Ysidro Creek 
southern portion was not burned and mostly residential, developed land. Otherwise, the 
majority of the area was 19.81% shrub/scrub, 30.98% mixed forest, and 28.14% evergreen 
forest. Arroyo Seco had a majority land use type of 56.52% shrub/scrub, 35.50% evergreen 
forest, and 4.99% mixed forest. The Arroyo Seco watershed is closer north of the Transverse 
range, while San Ysidro is closer to the coast and for this reason there is more developed land.

 

Figure 2. Arroyo Seco land use from 2008 NLCD. (Source: http://www.mrlc.gov/). 



 

Figure 3. San Ysidro Creek land use from 2008 NLCD. (Source: http://www.mrlc.gov/). 

 

Optimization: 

Optimization or auto-calibration finds the best solutions with regard to some conditions. There 
are three components to optimization; (1) an objective function that mathematically minimizes 
or maximizes a numeric value and indicates a goodness of fit measure, (2) decision variables are 
assigned that correspond to the options available to be manipulated, and (3) constraints, 
requirements imposed on the options. To apply hydrological optimization, a simulation is run to 
find constraint coefficients for the optimization. A cost function can be added with a set of possible 
decisions, and solve the optimization model to find the best solution.  

Performance evaluation in the calibration and validation process can be evaluated both 
qualitatively, visually, and quantitatively, with statistical measures. Both methods were applied 
in this study, the first of which included a visual inspection of the model, then statistical criteria 
used in the analysis (Feyen et al, 2000). The statistical criteria used in the analysis are the 
objective functions: the Coefficient of Determination (CD), R2, and the Root Mean Square Error 
(RMSE).  

These measures are given as: 

           𝑅2 =
∑ [𝑂𝑖−𝑆𝑖]2𝑛

𝑖=1

∑ [𝑂𝑖−𝑂̅𝑖]2𝑛
𝑖=1

                  (7) 

                    𝑅𝑀𝑆𝐸 = √
∑ [𝑂𝑖−𝑆𝑖]2𝑛

𝑖=1

𝑛
                                                                     (8)   

Where O,i is the i-th observed value , S,i is the i-th simulated value, 𝑂̅i is the average of the observed 
values, and n is the number of observations in the considered period. 

The CD describes the ratio of scatter plot of the simulated and observed values around the average 
of the observations. A CD value of one shows that the simulated and observed values match 
completely; the minimum value is zero and is positive. The RMSE provides a good measure of the 

http://www.mrlc.gov/


average difference between the observed and simulated values, and can be positive or negative 
(Feyen et al, 2000). A perfect fit is typically indicated by values close to zero.  

Figure 4 summarizes the SCE optimization algorithm process in a flow chart. First, parameters 
are defined for the simulation, observed data is considered from boundary conditions and rain 
gages. The algorithm generates a random population with selected parameters, uses the objective 
function, then the evolution process begins with multiple GSSHA simulations. A test for 
convergence will then provide inundation depths and optimized parameters. If there is no 
convergence, the evolution process needs to be repeated. 

 

Figure 4. Flowchart on optimization process. 

Results and Discussion 
 

Pre-fire Model Calibration 

 
The watershed models were developed with infiltration, surface roughness, and soil moisture. The 
pre-model calibration was prepared as an event-based simulation that included the 2018 January 
9 atmospheric rainfall event. The return period of the event was of 200 to 500 years, implicating 
a high flow. The source of parametric values based on the Arroyo Seco watershed (Pradhan and 
Floyd, 2021) was employed due to its proximity to the Santa Barbara watershed. Infiltration 
average values considered for the pre-fire condition was based on the literature from Pradhan and 
Floyd, (2021) and GSSHA manual (Table 2).  

Average parameter values for Manning’s roughness were considered from the 2016 National Land 
Cover Database (NLCD) the Pradhan and Floyd (2021) and GSSHA defined values and study 
shown in Table 3. Initial soil moisture was assumed to be uniform across the watershed with value 
of 0.18. 



Table 2. Pre-fire soil infiltration parameter values based on soil texture for San Ysidro model. (Amended: Pradhan 
and Floyd, 2021). 

Soil infiltration parameter Value 

Saturated hydraulic conductivity (cm/h) 0.81 

Capillary head (cm) 11.0 

Porosity (m3/m3) 0.41 

Pore distribution index (cm/cm) 0.37 

Residual point (m3/m3) 0.04 

Field capacity (m3/m3) 0.2 

Wilting point (m3/m3) 0.09 

 

Table 3. Pre-fire Manning's roughness parameter values for the routing model. (Amended: Pradhan and Floyd, 
2021). 

Land Cover Type/ Condition Manning’s roughness value (s/m1/3) 

Open Water 0.09 

Developed, Open Space 0.15 

Developed, Low Intensity 0.15 

Developed, Medium Intensity 0.15 

Deciduous Forest 0.45 

Evergreen Forest 0.45 

Mixed Forest 0.45 

Shrub/ Scrub 0.44 

Grassland/ Herbaceous 0.43 

Pasture/Hay 0.20 

Cultivated Crops 0.20 

Woody Woodlands 0.14 

 

Post-fire Model Calibration 
 

On Table 4, the post-fire manning’s roughness is reduced based on the post-fire burn condition 
(Pradhan and Floyd, 2021). Burn severity analyses of satellite coverage data showed that 11% of 
the area within the burn boundary were unburned, 31% burned with low severity, 56% moderately 
burned, and 1% burned with high severity. The most common type of burn in the San Ysidro Creek 
watershed was a medium burn, therefore Manning’s roughness is taken as 0.18. Table 5 
demonstrates the changed Manning’s roughness values according to the burn severity. Soil 
moisture was assumed to be uniform across the watershed at 0.13. Infiltration parameters 
changed within the model structure simulations according to the Pradhan and Floyd (2021) post-
fire condition equation. 



Table 4. Post-fire burn condition for infiltration model. (Amended: Pradhan and Floyd, 2021). 

Burned Condition Manning Roughness Value (s/m1/3) 

No burn No Change 

Low burn 0.2 

Medium burn 0.18 

High burn 0.15 

 

 

Table 5. Post-fire Manning’s roughness values for infiltration model. (Amended: Pradhan and Floyd, 2021). 

Land Cover Condition Manning’s roughness value (s/m1/3) 

Deciduous/Evergreen/Mixed Forest 
+  Medium Burn 

0.18 

Shrub + Medium Burn 0.18 

Grassland + Medium Burn 0.18 

Open Water 0.09 

Developed, Open Space 0.15 

Developed, Low Intensity 0.15 

Developed, Medium Intensity 0.15 

Deciduous Forest 0.45 

Evergreen Forest 0.45 

Mixed Forest 0.45 

Shrub/ Scrub 0.44 

Grassland/ Herbaceous 0.43 

Pasture/Hay 0.20 

Cultivated Crops 0.20 

Woody Woodlands 0.14 

 

Parameter Transfer Results for San Ysidro Creek: 

Figures 5 to 7 illustrate the GSSHA simulated discharge for pre- and post-fire conditions for San 
Ysidro Creek with transferred parameters from the Arroyo Seco watershed (Pradhan and Floyd, 
2021). The soil moisture is estimated at 30-m resolution to match the GSSHA model grid 
resolution. The hydrological models were developed with infiltration, surface roughness, and soil 



moisture. In this study, three scenarios were modeled with the 09 January 2018 rainfall event; 
(a) the pre-fire condition without considering the fire effects, underestimating the discharge 
(Figure 5), (b) the post-fire routing condition developed with a change in surface roughness 
(Figure 6), (c) the post-fire infiltration condition with a reduction factor of 0.1 (or 90% reduction) 
in soil hydraulic conductivity (Figure 7).  Surface roughness and hydraulic conductivity were 
reduced according to the burn severity (Pradhan and Floyd, 2021). The purpose of modeling the 
pre-fire condition was to compare the resulting flood depth to the post-fire conditions to examine 
the effectiveness of the post-fire reduction factor. The difference between the three models is 
visually shown south of the watershed with spreading of the flood grid and in max flow depth 
increasing values from 0.20 meters to 1.60 meters of maximum flow depth. Figure 5 does not 
consider fire effects and the flood extent does not go all the way downstream (0.2-0.4 meters 
maximum flow depth). Figure 6 considers a change in surface roughness and the flood extent goes 
all the way downstream of the watershed with more flow (0.2-0.8 meters) than Figure 5. Then, 
Figure 6 considers both the change in surface roughness and changes to infiltration, therefore 
having a larger maximum flow depth (up to 1.6 meters) than the previous figures and reaching 
the downstream area. Figure 8 shows the observed and the simulated post-fire infiltration 
condition flow depths closely matching in their flood locations. The southern portion of the 
watershed that contains developed land with many residential areas was affected the most with 
flow depths up to 1.60 meters. 

 

 

Figure 5. Pre-fire condition without considering the fire effects. 



       

Figure 6. Post-fire routing condition developed with change in surface roughness. 

       

Figure 7. Post-fire infiltration condition with a reduction in soil hydraulic conductivity. 



      

Figure 8. Simulated post-fire infiltration condition compared to observed maximum flow depths. 

The illustrations of the different scenarios demonstrate the difference in flood surface elevations 
where the pre-fire condition has a maximum flow depth of 0.39 meters (Figure 5), the post-fire 
routing condition, 0.64 meters (Figure 6), and the post-fire infiltration condition, 1.60 meters 
(Figure 7). Figure 8 shows the simulated model results and the observed inundation boundaries 
outlined in black. It can be seen that the maximum flow depth increases by an order of magnitude 
between Figure 11 and 12 showing that a reduction in hydraulic conductivity increases flood 
surface elevations by an order of magnitude, implying that the runoff generation process is more 
significant than the routing process in this study.   

Different flood depth values were extracted from various locations across the watershed and 
compared between observed and simulated depths (Figure 9). The observed values were from a 
small sample size of the entire watershed and then simulated based on the post-fire reduction 
condition. There is a cluster of points near the origin and one point outside of the range. Future 
research should include more values from low to high ranges to better define trends. 



  

Figure 9. Observed depth versus simulated depth for the San Ysidro Creek of 09 January 2018 flows. 

Based on the Pradhan and Floyd (2021) study, the hydraulic conductivity reduction factor was 
modeled with a 0.1 (or 90% reduction) and the coefficient of determination (R2) used as the 
objective function between the observed and simulated values. Donigian (2002) affirms that the 
coefficient of determination (R2) values range for assessing flows is to be very good when it is 
greater than 0.8; good when it is between 0.7 and 0.8; fair when it is between 0.6 and 0.7; and 
poor when it is less than 0.06. The post-fire reduction factor scenario had an R2=0.79, and 
RMSE=0.26 and are considered satisfactory in model performance. The small sample size of 
observational flow depth values indicates that set of parameters identified were able to represent 
the hydrological processes.  

Optimization Results for San Ysidro Creek: 

Hydraulic Conductivity and Manning’s roughness were optimized using the SCE method with 
RMSE as the objective function and it was revealed that the hydrologic response was comparable 
to the transferred parameters. 

Hydraulic Conductivity: 

As shown in Figure 10, the hydraulic conductivity reduction factor, Rfk, was calibrated using the 
SCE optimization algorithm, RMSE was used as the objective function between the observed and 
simulated values.  
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Figure 10. Hydraulic Conductivity Reduction Factor (Rfk) versus Root Mean Square Error (RMSE) optimization 
based on SCE optimization algorithm. 

Arroyo Seco was calibrated with an Rfk equivalent to 0.10 (or 90% reduction) which is similar to 
the calibrated results for San Ysidro Creek. Figure 10 illustrates the relationship between the 
RMSE and the post-fire hydraulic conductivity reduction factor (Rfk). In this post-fire scenario, 
the Rfk is equivalent to a 0.05 (or 95% reduction) in hydraulic conductivity, where RMSE reaches 
an equilibrium between 0.2 and 0.3 demonstrating the impact of the fire on the land cover. 
Generally, the closer the RMSE is to 0, the more accurate the model is. The RMSE is comparable 
to that of the transferred parameters, reiterating that there was a reduction in hydraulic 
conductivity.  

A study done by the USGS assessed core samples with tension infiltrometer measurements 
showed significant decreases in field hydraulic conductivity in burned areas relative to unburned 
areas therefore confirming the reduction in hydraulic conductivity results of this study (Ebel and 
Moody, 2020). The infiltration rate is a function of hydraulic conductivity, implicating that less 
water is infiltrating, therefore causing higher flow depths. The heating of organic matter in 
medium severity burns may be attributed to water repellency. Sorptivity directly relates water 
repellency to infiltration (Shillito et al., 2020).  

Manning’s Roughness: 

Manning’s roughness, n, was calibrated using the SCE optimization algorithm, the root mean 
square error (RMSE) was used as the objective function between the observed and simulated 
values (Figure 11). 
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Figure 11. Manning's roughness versus Root Mean Square Error (RMSE) optimization based on SCE optimization 
algorithm. 

Manning’s roughness was considered for shrub land cover with ranges from 0.09 to 0.45. The 
RMSE has a cluster of points from 0.2 to 0.4, with a concentration of points at 0.22. There is not 
much sensitivity in manning’s roughness as there was in the Rfk. Surface roughness may change 
after a wildfire by the consumption of vegetation, litter, and duff, and by the deposition of an ash 
layer (Moody et al., 2013). The non-uniformity in the spatial distribution of sediment sources can 
change the transport process (Santi et al., 2008). Essentially, material and ashes can move with 
water causing changes in runoff patterns and sediment transport. Change in land cover is a 
dynamic process after fires, which may indicate surface roughness being a less sensitive 
parameter. Furthermore, the steep terrain and riprap stability may be factors to consider when 
computing hydraulic conditions. Manning’s roughness is highly dependent on the flow 
depth/mean size of bed particle. The change in Manning’s roughness from a very shallow depth 
(e.g., water depth is of same magnitude as mean size of bed particle) to not shallow depths (e.g., 
flow depth/mean size of bed particle > 30) can be of an order of magnitude (Brown and Clyde, 
1989).  

Similarity in both transferred and optimized parameters improved calibration and reduced the 
level of uncertainty in simulation runs. The San Ysidro Creek and Arroyo Seco watersheds had 
similar conditions and therefore had similar hydrologic responses following intense wildfire 
events. The parameterization methodology in this study can be further applied for ungauged or 
poorly gauged watersheds.  

Assumptions and Limitations: 

The stream gages near San Ysidro Creek were burned during the Thomas fire, hence the lack of 
flood elevations and discharge datasets for the pre- and post-fire flood event. The maximum flow 
depth, h, was estimated from the run-up on the downstream side of trees and mudlines on 
structures acquired from the Kean et al. (2019) study. Measurements of soil-hydraulic properties 
were unavailable, therefore alternative methods were used for parameterization. Parameters from 
the Arroyo Seco watershed were first calibrated using the Nash-Sutcliffe efficiency as the objective 
function for pre- and post-fire events. Then, parameters were transferred using the calibrated 
values and calibrated once again using RMSE as an objective function. 
 



Conclusion and Recommendations 
 

The hydrologic behavior of the San Ysidro Creek watershed was simulated using GSSHA after 
different scenarios (pre- and post-fire conditions) with transferred parameters from a similar, 
nearby watershed. The different scenarios accounted for the following identified parameters: 
Manning’s roughness and the hydraulic conductivity reduction factor. Performing the model 
validation demonstrated a good representation of the observed data. Auto-calibration was 
performed using the SCE method for both parameters and it was found the hydrologic response 
was comparable between the transferred parameters and auto-calibration.  

The three pre- and post-fire scenarios demonstrated the differences of hydrologic response 
(changes in depth and areal extent) depending on different factors considered when applying 
GSSHA. The pre-fire condition did not consider fire effects and had little flow depth that did not 
extend downstream. Whereas, the post-fire routing condition that considered a change in surface 
roughness extended downstream and had more flow depth. The post-fire infiltration condition 
considered both the change in surface roughness and infiltration and showed the most significant 
changes in flow depth. It was established that although both parameters were sensitive, the 
hydraulic conductivity reduction factor was significantly more dominant.  

Understanding hydrological processes in the development of pre-fire and post-fire models is 
crucial for emergency assessment. This study provided an organized physics-based framework 
that characterized different hydrological processes and provided a methodology for future studies 
for ungauged and poorly gauged watersheds. 

Future research should focus on enhancing the understanding of post-fire soil hydraulic 
responses and modeling capabilities by improving post-fire field measurements to help validate 
models. Attention should be devoted to soil and land data collection as the data is important in 
characterizing post-fire hydrology. Since wildfires are increasing in frequency, multiple methods 
of field measurements including remote sensing should be explored in the years that follow. 
Laboratory tests on hydraulic conductivity and manning’s roughness could provide a parametric 
range for future studies. 

Additional studies on Manning’s roughness should be applied to test for uncertainty. Likewise, 
routing conditions with similar topography should be considered. An assessment of the extent of 
similarity in parameter transfer should be evaluated to understand when parameter transfer is 
appropriate. Finally, GSSHA can be implemented for planning structural designs in flood-prone 
areas for communities to be protected. 
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