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Abstract 
 
The purpose of this study is to provide information regarding the stability of ephemeral streams 
on the north side of the Grand Valley, Colorado. The ungaged ephemeral streams in this 
semiarid region are of particular interest because (1) the underlying bedrock geology, Mancos 
Shale, is a sedimentary rock deposit that has been identified as a major contributor of salinity to 
the Colorado River and (2) despite infrequent flows of short duration, monsoon derived floods 
in these ephemeral streams can carry substantial amounts of sediment downstream, affecting up 
and downstream banks and channel cross sections. The study area is of interest as salinity, or 
the total dissolved solids concentration, in the Colorado River causes significant economic 
damages in the United States and geologic sources are a significant contributor of Upper 
Colorado River Basin dissolved-solid. In an effort to minimize salt contributions to the Colorado 
River from public lands administered by the Bureau of Land Management (BLM) a 
comprehensive three-pronged salinity control approach is being used which incorporates (1) 
controlling point sources of salinity; (2) controlling nonpoint sources of salinity; and (3) 
preventing nonpoint sources of salinity from persisting. 
 
In 2018, the U.S. Geological Survey (USGS), in cooperation with BLM, began an assessment of 
ephemeral streams located in the north side of the Grand Valley, Colorado, to characterize 
stream channel stability. The USGS developed a method for automatically extracting channel 
cross-section geometry from existing remotely sensed terrain models. Based on estimated flood 
stage and surrogate streamflows, hydraulic characteristics were calculated. Furthermore, the 
channel geometries and hydraulic characteristics were used to estimate channel stability 
utilizing a statistical model.  
 
In this ongoing study, cross-section stabilities were determined from a stream channel stability 
assessment for a subset of 1,406 visited locations out of a desired 13,415 cross sections which 
were delineated from remotely sensed terrain models. The application of Manning’s resistance 
equation in combination with multiple Logistic Regression models demonstrated that channel 
stability can be estimated with an 0.85 goodness of fit for a validation dataset when using a 
combination of drainage area, width to depth ratio, sinuosity, and shear stress as the 
explanatory variables. Stream channel stability was extrapolated for the remaining 13,415 
unvisited cross sections using the multiple Logistic Regression model and defined explanatory 
variables. Mapping the ephemeral streams and their associated stabilities could be used to 
support BLM prioritization of areas for remediation or changes in management strategies to 
reduce sediment and salinity loading to the Colorado River.  
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Non-perennial streams can flow either seasonally (intermittent), or only briefly after rain or 
snowmelt events (ephemeral), and are present across all global continents, ecoregions, and 
climate types. Non-perennial streams constitute over half the global stream network length 
(Messager and others, 2021). They make up approximately 59 percent of all streams in the 
United States (excluding Alaska) and over 81 percent in the arid and semi-arid Southwest 
(Arizona, New Mexico, Nevada, Utah, Colorado, and California) according to the U.S. Geological 
Survey (USGS) National Hydrography Dataset (Levick and others, 2008). Hydrological and 
ecological research has predominantly focused on perennial waters, in part because gage 
networks are biased toward larger rivers (Zimmer and others, 2020). However, non-perennial 
streams have garnered increasing consideration in recent years (Leigh and others, 2016; Allen 
and others, 2020; Shanafield and others 2020, 2021) and this attention will likely continue in 
growth as the abundance of non-perennial streams is predicted to increase due to climate 
change and land use alterations as these systems experience increased drying (Palmer and 
others, 2008; Larned and others 2010; Jaeger and others, 2014; Datry and others, 2018; Ward 
and Walsh, 2020). Utilizing USGS streamgage data, Zipper and others (2021) illustrated this 
trend is already in effect in the arid and semi-arid Southwest United States where the degree of 
intermittency in most streams has been increasing over the past 30 years. Additionally, the 
study highlighted the critical need for adequate non-perennial stream assessments as 
streamgages are typically installed in perennial streams to support human-oriented water needs, 
including allocation of water resources, flood hazard mitigation, and riverine navigation. 
 
The Grand Valley in western Colorado is located in the semiarid Southwest United States. The 
north side of the Grand Valley has many ungaged ephemeral streams which are of particular 
interest because (1) the underlying bedrock geology, Mancos Shale, is a sedimentary rock 
deposited in a shallow sea environment during the Late Cretaceous epoch and has been 
identified as a major contributor of dissolved mineral salts to the Colorado River (Whittig and 
others, 1982; Weltz and others, 2014) and (2) despite infrequent flows of short duration, 
monsoon derived floods in ephemeral streams can transport substantial amounts of sediment 
downstream (Hassan, 1990). These are important because salinity, or the total dissolved solids 
concentration, in the Colorado River causes an estimated $300 to $400 million per year in 
economic damages in the United States (Reclamation 2001). Dissolved solids in water occur 
naturally due to weathering and dissolution of minerals in soils and rocks; however, various 
anthropogenic activities can increase dissolved-solid loading above natural levels (Anning and 
others, 2010). Geology, land cover, land-use practices, and climate are factors known to affect 
dissolved-solids loading to streams (Kenney and others, 2009). To address these challenges, the 
Colorado River Basin Salinity Control Forum (CRBSCF) was established in 1973 (CRBSCF, 
2014) to enhance and protect the quality of water in the Colorado River for use in the United 
States and Mexico, in accordance with the 1972 Clean Water Act and the Salinity Control Act of 
1974 (Reclamation, 2001). 
 
Within the Colorado River Basin, the Bureau of Land Management (BLM) administers 
approximately 53 million acres of public lands and approximately 7.2 million of those acres 
contain saline soils (BLM, 1987, Boyd and Green, 2018). Within these lands, nonpoint sources of 
salt include surface runoff, eroded soils, stream sediment, and groundwater discharge to 
streams, with salt concentrations being the greatest from land with marine shales and 
mudstones such as the Mancos Shale (Bentley and others, 1978). Within the Colorado River 
Basin, highly saline soils generally occur in rangeland areas that receive low annual precipitation 
(less than 20 centimeters [cm]). Although salt concentration can be very high in runoff waters 
from these lands, the frequency and volume of runoff is very low due to the ephemeral nature of 
the stream system (Bentley and others, 1978). Regardless, runoff from highly to moderately 



saline soils in the Upper Colorado River Basin contributes approximately half of the annual salt 
load from BLM administered public lands (Bentley and others, 1978; BLM, 1987; BLM, 2004) 
and it is estimated that 62 percent of Upper Colorado River Basin dissolved-solid loads originate 
from geologic sources (Miller and others, 2017). 
 
In an effort to minimize salt contributions to the Colorado River from public lands administered 
by the BLM a comprehensive three-pronged salinity control approach is being used which 
incorporates (1) controlling point sources of salinity, such as discharges from abandoned wells 
and mines; (2) controlling nonpoint sources of salinity, such as by reducing sediment transport 
from past activities through a number of land management programs and watershed restoration 
activities; and (3) preventing nonpoint sources of salinity from ongoing, authorized activities 
through land use planning, permit stipulations, best management practices, and related 
conservation actions (Boyd and Green, 2018). Ephemeral streams are one salt transport 
mechanism in arid rangelands, where salt may be transported either in solution or attached to 
eroded soil particles. Salt loading in these environments is closely associated with sediment 
loading (Jackson and others, 1985; Schumm and Gregory, 1986; BLM, 1987; Gellis and others 
1991; Reclamation, 2001). Any practices that reduce erosion or store sediments outside of the 
active channel in highly saline arid landscapes, especially in headwater areas, could affect the 
retainment of salt from these associated sediments. 
 
In 2018, the USGS, in cooperation with BLM, began an assessment of ephemeral streams 
located on the north side of the Grand Valley in Colorado (fig 1), to characterize stream channel 
stability. The ephemeral streams within the study area lacked sediment and hydrological data, 
so rather than implementing a sediment transport model or hydraulically driven analysis to 
assess their stability, channel geometries and surrogate streamflows were utilized. Channel 
cross-section geometries were acquired from existing remotely sensed terrain models (USGS, 
2019a), and calculated hydraulic characteristics were based on surrogate StreamStats 
streamflows (USGS, 2019b). Instead of relying on available software, such as HEC-RAS (HEC, 
2021), to manually extract channel cross sections and generate associated channel geometries 
and hydraulic characteristics on more than ten thousand stream channel locations, the USGS 
utilized R code and RStudio statistical software version 4.2.2 (RStudio Team, 2022) to automate 
the process. Utilizing a statistical model, the channel geometries and hydraulic characteristics 
were used as predictor variables to estimate the probability of channel stability for the 
ephemeral streams. The probability of channel stability in this arid rangeland was mapped and 
areas with low probability of channel stability could be used by BLM to evaluate and prioritize 
areas to target for remediation or changes in management strategies to reduce sediment and 
salinity loading to the Colorado River. 



 
 

Figure 1: Areal image showing the study area (light gray shading) near Grand Junction, Colorado. 

 

Methodology 
 
Cross-section stabilities were determined from a stream channel stability assessment for a 
subset of 1,406 visited locations out of a desired 13,415 cross sections which were delineated 
from remotely sensed terrain models. To predict whether the remaining unvisited ephemeral 
stream cross sections are stable or experiencing erosion, multiple Logistic Regression models 
were used. In statistics, a regression model is a method by which one variable is explained or 
understood on the basis of one or more other variables (Hilbe, 2009). The variable that is being 
explained is called the dependent, or response, variable; the other variables used to explain or 
predict the response are called independent variables. Typically independent variables are 
simply referred to as predictors or explanatory variables. For this study, the variable being 
explained was cross-section stabilities and the explanatory variables included 18 independent 
channel geometry and hydraulic characteristic, as well as road proximity and density 
information (Table 1). All data associated with this study, including cross-section profiles, 
StreamStats streamflows, Manning’s N values, channel geometry characteristics and hydraulics, 
and channel stabilities are available in a USGS data release (Homan, 2023). 
 

Table 1. Explanatory variables used within the multiple Logistic Regression models. 

 
Streamflow Average velocity Specific stream power 

Drainage area Channel top width Shear stress 
Channel bed slope Maximum depth of water Froude number 

Sinuosity Wetted perimeter Width to depth ratio 
Manning’s n Hydraulic radius Road Proximity 

Streamflow area Total stream power Road density 
 



To calibrate the Logistic Regression models and assess the outputs of stream channel stability, a 
ground truthing component was needed. Within the study area, channel stability was assessed at 
1,406 cross sections within 48 ephemeral stream channels. The field-based channel stability 
observations were split into calibration and validation datasets and used to evaluate the 
predictive powers of different combinations of the 18 explanatory variables. Constructed 
Logistic Regression models predicted channel stability as a function of the explanatory variables 
used, with not all variables providing the same predictive powers. Optimization of a model is 
achieved when a model provides the best predictive powers with the fewest explanatory 
variables. There are various machine learning methods to select, adjust, or change the 
explanatory variables used in the multiple Logistic Regression models, including but not limited 
to stepwise, bootstrapping, LASSO, and dominance analysis (Azen and Traxel, 2009; Bursac and 
others, 2008; Zhang and other, 2015. The four machine learning methods were used to assist 
the explanatory variable selections. The Logistic Regression outputs are coded as 0 or 1, where 1 
indicates that the outcome of interest is present (for example, active erosion), and 0 indicates 
that the outcome of interest is absent (for example, stable or no erosion). If p is the probability 
that the outcome is 1, the multiple Logistic Regression model can be written as follows (Helsel 
and others, 2020): 

𝑝 ̂ =  
exp (𝑏0+𝑏1𝑋1+𝑏2𝑋2+⋯+𝑏𝑝𝑋𝑝)

1+exp (𝑏0+𝑏1𝑋1+𝑏2𝑋2+⋯+𝑏𝑝𝑋𝑝)
                                       (Eq. 1) 

where: 

𝑝 ̂ = the expected probability that the outcome is present, 

exp is an abbreviation for exponential, 

X1 through Xp are the distinct independent variables, and 

b1 through bp are the regression coefficients. 

 
The modeled probabilities could not be directly compared to the stability assessments within the 
validation datasets, so probabilities over 50 percent were assigned a binary value of active, 
whereas probabilities less than 50 percent were defined as stable. Validation of the model’s 
predictive abilities were based on goodness-of-fit r-squared (r2), Akaike information criterion 
(AIC) and McFadden’s pseudo-r-squared (pseudo r2) values. Larger r2 values represent smaller 
differences between the observed data and the fitted values, and a better fit model (Healy, 1984), 
lower AIC values indicate a better-fit model (Kenney, 2015), and McFadden’s pseudo r2 values 
0.2 or greater indicate good-to-excellent model fit (Lane and others, 2009). 
 
Using the top performing multiple Logistic regression model, stream channel stability was 
extrapolated for 13,415 unvisited cross sections. The modeled erosion probabilities for all cross 
sections were subsequently mapped in Aeronautical Reconnaissance Coverage Geographic 
Information System (ArcGIS) software version 10.8.1 (esri 2020) to identify locations of 
instability and where remediation or change to management strategies could potentially reduce 
sediment and salinity loading downstream.  
 

Results 
 
Based on the stream channel stability assessments, cross-section stabilities were known for the 
subset of 1,406 visited locations but needed to be estimated at 13,415 cross sections with 
explanatory variables. Multiple Logistic Regression models were utilized to extrapolate stream 
channel stability to the unvisited cross sections. Working with the 18 explanatory variables 
(Table 1) and four machine learning methods (stepwise, bootstrapping, LASSO, and dominance 



analysis) to assist the explanatory variable selections, 28 explanatory variable combinations 
were designated. Of the 28 multiple Logistic Regression models (explanatory variable 
combinations), the top performing model, “glm_20” (where “glm” stands for generalized linear 
model), had the highest r2 value, lowest AIC value, and largest pseudo r2 value is presented in 
Table 2. 
 

Table 2. Goodness-of-fit r-squared (r2), Akaike information criterion (AIC), and McFadden’s pseudo-R-squared 
(pseudo r2), for the top generalized linear model (GLM) using drainage area, width to depth ratio, sinuosity, and shear 

stress as the explanatory variables. 

 

r2 AIC pseudo r2 GLM_20 

0.845 1121 0.16 Drainage Area + Sinuosity + Shear Stress + Width to Depth Ratio 

 

For the stream channel stability validation dataset, which consisted of 422 cross sections 
dispersed throughout the study area, the glm_20 model correctly estimated channel stability 
with an 0.845 goodness of fit when using a combination of drainage area, width to depth ratio, 
sinuosity, and shear stress as the explanatory variables (Table 2). Using this top performing 
multiple Logistic Regression model (glm_20), stream channel stability was extrapolated for the 
remaining unvisited cross sections.  

Figure 2 shows the modeled erosion probabilities (0 to 100 percent) mapped at all 13,415 cross 
sections along the 48 ephemeral streams within the north side of the Grand Valley. The erosion 
probabilities are modeled confidence levels that the cross sections are experiencing erosion, with 
no indication about the severity or magnitude of erosion. Based on the criteria that cross 
sections with erosion probabilities over 50 percent are active and cross sections with erosion 
probabilities less than 50 percent are stable, a total of 10,080 cross sections, or roughly 75 
percent, are modeled as active. 
 

 



 
Figure 2. Multiple Logistic Regression erosion probabilities for the 13,415 cross sections within Grand Valley, 

Colorado (Homan, 2023). 

 
Based on the evaluation of erosion probabilities within the validation dataset, it was recognized 
that active erosion in smaller cross sections (for example, 1-m wide and a few centimeters deep) 
have less potential sediment compared to larger cross sections (for example, 10-m wide and 2-m 
deep). The concept of a larger area having more sediment potential is not revolutionary, but it is 

especially true for ephemeral streams, which are not sediment supply limited like perennial 
channels (Reid and Laronne, 1995), therefore, larger cross-sectional surface areas have a greater 

amount of potential sediment for transport. To account for potential sediment within active 
cross sections, the erosion probabilities were weighted (multiplied) by the cross-sectional 

streamflow areas (Homan, 2023). The resultant high-resolution map (Figure 3 

Figure 2) of weighted erosion probability could help to prioritize specific areas for more 

intensive study. The weighted erosion probabilities consider the multiple Logistic Regression 

modeled confidence levels as well as the amount of potentially available sediment. Unlike figure  

Figure 2, which illustrates three fourths of the study area as having active erosion, fewer stream 
channels are identified (red/orange/yellow) as having greater potential levels of sediment and 

salinity loading to the Colorado River in Figure 3. 

 

 
Figure 3. Map of cross section streamflow area weighted (multiplied by the cross-sectional streamflow areas) 

erosion probabilities for the 48 stream channels using 13,415 cross sections in Grand Valley, Colorado (Homan, 
2023). 

 



Conclusion 
 
The Grand Valley in western Colorado is located in the semiarid Southwest United States within 
the Upper Colorado River Basin; an area which includes many ungaged ephemeral streams that 
are of particular interest because (1) the underlying bedrock geology, Mancos Shale, is a 
sedimentary rock deposited in a shallow sea environment during the Late Cretaceous epoch and 
has been identified as a major contributor of dissolved mineral salts to the Colorado River and 
(2) despite infrequent streamflow events of short duration, monsoon derived floods in 
ephemeral streams can carry substantial amounts of sediment downstream (Hassan 1990). 
These points of interest are important because salinity, or the total dissolved solids 
concentration, in the Colorado River causes an estimated $300 to $400 million per year in 
economic damages in the United States (reclamation, 2017), and it is estimated that 62 percent 
of Upper Colorado River Basin dissolved-solid loads originate from geologic sources (Miller and 
others, 2017). Salt loading in these environments is closely associated with sediment loading 
(Jackson and others, 1985; Schumm and Gregory, 1986; BLM, 1987; Gellis and others 1991; 
BOR, 2001). Any practices that reduce erosion and store sediment in highly saline arid 
landscapes, especially in headwater areas, could have the effect of retaining salt in the trapped 
sediment. In an effort to minimize salt contributions to the Colorado River from public lands 
administered by the BLM, a comprehensive salinity control approach is used to reduce nonpoint 
sources of salinity through cost-effective land management techniques and practices (BLM, 
2004; Boyd and Green, 2018).  
 
In 2018, the USGS, in cooperation with the BLM, began an assessment of ephemeral streams 
located in the north side of the Grand Valley, Colorado, to characterize stream channel stability 
and identify mechanisms driving erosion. In doing so, the USGS developed a method using R 
code and RStudio statistical software for automatically extracting channel geometries from 
existing remotely sensed terrain models and based on estimated flood stage streamflows, and 
hydraulic characteristics were calculated. Furthermore, utilizing a statistical model, the channel 
geometries and hydraulic characteristics were used to estimate channel stability at individual 
cross sections for the ephemeral streams.  
Based on a stream channel stability assessment, cross-section stabilities were known for a 
subset of 1,406 visited locations but desired for 13,415 cross sections which were delineated 
from remotely sensed terrain models. The application of Manning’s resistance equation 
(Manning, 1891) in combination with multiple Logistic Regression models demonstrated that 
channel stability can be estimated with an 0.85 goodness of fit for a validation dataset when 
using a combination of drainage area, width to depth ratio, sinuosity, and shear stress as the 
explanatory variables. Using the multiple Logistic Regression model and defined explanatory 
variables, stream channel stability was extrapolated for the remaining unvisited cross sections. 
Maps of the ephemeral streams and their stabilities in this arid rangeland, that is underlain by 
saline rich Mancos Shale, could be used to prioritize areas for remediation or changes in 
management strategies to reduce sediment and salinity loading to the Colorado River. 
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