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Abstract  
 
Wildfires are expected to increase in both size and severity in the western U.S. These 
disasters cause important, often lasting changes to watershed dynamics, particularly in 
sediment mobilization processes, and create problems for downstream reservoirs and water 
treatment facilities. Therefore, it is essential to improve our understanding of wildfire-
driven changes in streamflow and suspended sediment loading (SSL) to mitigate damages. 
Previous efforts to model wildfire effects have often focused on a small subset of sites and 
a limited number of post-fire hydrologic processes changes such that the insights gained 
have generally lacked transferability due to regional variations in the drivers of these 
responses. Additionally, scarcity of observational sediment data provides a further 
challenge for finding generalizable influences on post-fire sediment response useful for 
modeling in areas with little to no available sediment data, which represent the vast 
majority of basins in the West. In this research, we seek to improve understanding of post-
disturbance hydrology and sedimentation by first characterizing streamflow and sediment 
relationships through commonly used rating curve parameters at a diverse set of gaged 
locations across the western U.S. We combine this with basin topographical and water 
infrastructure development information from the GAGES-II dataset. We then select a 
relatively undeveloped basin from this dataset (the Rio Puerco near Bernardo, NM) that 
has been affected by five observed fire events between 1999 and 2014 as a testbed for 
measuring the viability of a set of increasingly data-intensive approaches for finding a 
detectable post-fire sediment response signal. We begin by applying a statistical model to 
pre-fire stream gage data and forecasting the post-fire season, comparing differences in 
suspended sediment loading (SSL) magnitudes between the forecast and observations. We 
subsequently add precipitation data from Daymet (basin-averaged, then gridded), and fire 
extent data from the Monitoring Trends in Burn Severity (MTBS) dataset to improve post-
fire sediment signal strength. Future work will see further exploration of novel detection 
techniques, as well as the eventual application of these methodologies to other western 
basins in an effort to uncover regional influences on sediment response to wildfire. This 
study carries implications for post-fire sediment modeling, water management, and 
reservoir operations.  



Introduction 
 

Wildfires are expected to increase in both size and severity in the western U.S. 
Sankey et al. (2017) predicts that post-fire sedimentation rates will increase by over 10% 
for nearly 9/10ths of watersheds, and greater than 100% for more than 1/3rd of watersheds 
by the 2041-2050 decade. This is cause for concern, as these disasters instigate important 
and often lasting changes to watershed dynamics, particularly in sediment mobilization 
processes, and create problems for downstream reservoirs and water treatment facilities. 
Recent studies have shown that post-fire overland flow, discharge, and peak flows can 
increase by several orders of magnitude relative to pre-fire conditions, particularly in the 
first 1-3 years (Neary et al., 2011). Within streams, suspended sediment particles from fire-
affected locations have been known to exhibit significantly higher settling velocities than 
unburned particles of similar diameter due to reduced organic content and pore space 
(Blake, et al., 2007, 2009). As a consequence, an increase in fine sediment loading in 
streams and reservoirs located downstream of affected areas may be observed (Smith et al., 
2011). This can necessitate costly interventions such as reservoir dredging for downstream 
infrastructure (Jones et al., 2017), further underscoring the importance of understanding 
post-fire effects on hydrology and geomorphology. 
 From a hydrologic standpoint, destruction of vegetation and litter following an 
event affects canopy interception, evapotranspiration, and storage of rainfall, which can 
also influence the accumulation and melting of snow (Shakesby & Doerr, 2006). Wildfire-
induced soil heating affects its physical and chemical properties, increasing water 
repellency and decreasing aggregate stability. Rain splash can disrupt and compact the soil, 
and fine sediments dislodged by this process can clog soil pores and lead to surface 
sealing. An abundance of fine sediments generated from the ash of combusted vegetation 
leads to further water repellency (Meyer & Wells, 1997). Infiltration is often reduced as a 
result of these changes (Moody & Martin, 2001), which in turn generates considerably 
higher overland flow, increased discharge, and peak flows orders of magnitude greater than 
pre-fire conditions, particularly in the first 1-3 years (Neary et al., 2011). 
 The geomorphology of a basin is also affected in a variety of ways. Numerous 
studies have documented increased erosion rates following a fire disturbance (Benavides-
Solorio & MacDonald, 2001; Cerda & Doerr, 2005; Luis, et al., 2003; Emmerich & Cox, 
1994; Fernandez, et al., 2011). Since erosion is largely dependent on overland flow, 
erosion rates are usually determined by factors that control runoff generation: soils, 
vegetation, and water input. Overland flow arises from either saturation-excess or 
infiltration-excess conditions, and it is the latter that is the dominant mechanism in arid and 
semi-arid regions where wildfires are commonplace (Wondzell & King, 2003). Easily 
erodible sediment becomes exposed when protective vegetation cover is burned away, and 
a combination of soil organics combustion and intense heating leads to decreased 
cohesiveness of surface soil and further ease of erosion (Johansen, et al., 2001).  

In addition to the spatial component of wildfire disturbance, the temporal 
component of how wildfire effects manifest years or even decades into the future following 
an event is perhaps equally as important to characterize. The impact of wildfire disturbance 
can be quantified by measuring the post-fire change in process rates (discharge, hillslope 
and channel erosion, sediment transport, and deposition) and contrasting these with pre-fire 
conditions (Swanson, 1981). Some studies (Vieira, et al., 2015) characterize this difference 



using a logarithmic response ratio, which expresses the proportional difference in a 
response variable between a “treatment” (burned area) and an unburned reference. This is a 
typical metric for meta-analysis of ecological data.  

The relationship between pre- and post-fire process rates may be observed through 
time. Immediately following a wildfire event, during the “initial phase”, process rates have 
been observed to increase with time before reaching a maximum. A recovery phase then 
takes place following this maximum where the rates decrease. The combined length of 
these two phases are what is known as the relaxation time, which can vary widely from 
one to three years for sediment fluxes, up to thirty years for discharge, and longer for 
regrowth of trees (Rowe, et al. 1949). Over long time intervals, the importance of wildfire 
as a geomorphic agent depends upon the ratio between this relaxation time, and the 
wildfire recurrence time: a ratio known as the transient form ratio (Brunsden and Thornes, 
1979). Because wildfires lower the threshold of energy required for erosion to take place, 
even a low intensity storm event coupled with spatially heterogeneous wildfire effects can 
be an important agent for sediment mobilization, particularly in arid and semi-arid 
mountainous basins common across the West (Moody & Martin, 2001). 

While many experiments document the effects of wildfire on erosion and overland 
flow magnitudes at the plot scale, few studies (Reneau et al., 2007; Pelletier & Orem, 
2014) focus on post-fire sedimentation effects at the basin scale, which is significantly 
more important to quantify in order to avoid costly damages for downstream reservoirs and 
water treatment facilities. Unfortunately, predicting sediment delivery at the basin scale is 
a much more complicated process than predicting at the plot or hillslope scale, due to the 
addition of numerous processes, sources, and sinks that may hinder or help a sediment 
particle in reaching the basin outlet (Fryirs, 2013). For sediment transport, it is often noted 
that river systems act as ‘jerky conveyor belts’ (Ferguson, 1981), in that sediment is 
transported episodically through the catchment. Landforms in which sediment may be 
stored for long periods of time, such as slopes, floodplains, or terraces, may attenuate or 
even completely mask a sediment response signal (Fryirs & Brierley, 2001). The effects of 
a wildfire event on sediment loading may not make themselves known at the basin outlet 
until months, or even years after the fact. 

To further complicate the issue, there are also limited resources available for the 
direct observation of sedimentation in the U.S. In the West, there are over 9,000 
decommissioned or active gages measuring streamflow according to the USGS Geospatial 
Attributes of Gages for Evaluating Streamflow (GAGES-II) dataset (Falcone, 2017). Of 
these, 2,317 of the gaged basins are co-located with wildfire ignition points documented in 
the Monitoring Trends in Burn Severity (MTBS) dataset (Eidenshink et al., 2007), and 
only a small subset (n = 187) also contain direct measurements of suspended sediment 
concentration (SSC) at any point in their operational lifetime; that is, not necessarily when 
a wildfire event has taken place. This paper presents a preliminary analysis into the 
problem of detecting the post-fire hydrologic and sediment response from basins across the 
western U.S. in the context of this sparse data availability, and sets the stage for future 
work, which will more rigorously assess the detectability of wildfire signals at the basin 
scale using supplemental data derived from prior studies, remotely-sensed basin 
physiography, and meteorological observations. We first conduct a meta-analysis of gaged 
basins across the West as a top-down comparative measure, and subsequently focus on a 



single basin to serve as a testbed for refining several analytical techniques with the aim of 
uncovering a robust post-fire sediment signal. 
 
 
Study Domain and Data Products 
 
The western U.S. was selected as the study domain for evaluation of regional variations in 
hydrologic and geomorphologic response to wildfire, as well as in relationships between 
streamflow and sediment transport (Figure 1). 
 

 
Figure 1. Western U.S. Study Domain: All wildfire ignition points (recorded 1985-2016) are shown in red 
(Eidenshink et al., 2007). All GAGES-II basins are also displayed (Falcone, 2017). Note that some basins are 
nested. 
 
MTBS data were coupled with USGS GAGES-II basin information, and USGS National 
Water Information System (NWIS) stream gage data to support this regional analysis. 
Merging these datasets yielded a total of 255 wildfires across 187 gaged basins that have 
been observed for both streamflow and sediment, representing the wildfires and basins 
analyzed in the first section of this paper. 

A single basin was isolated in order to evaluate and refine the methodology for 
quantifying post-fire sediment signals. This site was selected from the total 187 gaged 
basins based on several criteria that were established to identify a basin with the greatest 
likelihood of signal detection. These criteria include: minimal upstream regulation (e.g. 
dam density and storage) from GAGES-II, number of observed fires, size of observed fires 
as a percentage of basin size, and excluding non-snowmelt-dominated basins given 



complexities associated with snowmelt timing and transport uncertainty. This selection 
process yielded the USGS Gage 08353000 for Rio Puerco near Bernardo, NM as the most 
suitable candidate. A plot of the study site is shown below in Figure 2. Located west of 
Albuquerque, NM, this location offers comparatively little infrastructure development, 
with a basin area of 15,724.93 km2, 23 dams total (0.15 dams/km2), and a dam storage 
density of 3.9 ML/km2. 
 

 
Figure 2. USGS Gage 08353000 (Rio Puerco near Bernardo, NM): Basin extent is shown in blue. Fires 
observed for both sediment and streamflow are shown in red, and the gage location can be seen towards the 
south as a black and white circle. 
 

A total of 5 fires (2 prescribed burns and 3 wildfires) were observed within the 
drainage area during the period 1999-2014 when the gage was collecting both streamflow 
and sediment data. The largest fire, which occurred June 12th, 2004, consumed 
approximately 37.4 km2 (0.23%) of the basin areal extent. The second and third largest 
fires occurred May 30th, 2008 and June 3rd, 1999, respectively, consuming 17.8 km2 
(0.11%) and 13.1 km2  (0.08%) of the basin extent.   

Streamflow and SSC data were available for the period between 1994 and 2016, 
with a brief period of streamflow only in 2015. A plot of observational data for the basin is 
shown below in Figure 3. 
  
 



 
 
Figure 3. Mean daily streamflow (top) and mean daily SSC (bottom) data. Vertical red bars denote wildfire 
ignition dates, with the thickness of the bars representing the relative size of the fires as a fraction of the total 
basin area. 

 
For the single site analysis, daily gridded 1-km precipitation data from Daymet 

(Thornton, et al., 2018) were utilized in addition to the gage data. These precipitation data 
were incorporated into the analysis in two ways: lumped over the basin areal extent to 
obtain a mean areal precipitation (MAP), and lumped individually over wildfire extents so 
as to only capture precipitation falling on fire-affected areas. 
 
 
Methods 
 
The Monovariate Rating Curve (MRC), also known as the sediment rating curve, is an 
empirical method for estimating sediment loading exclusively as a function of streamflow. 
The most common form is that of a power relationship: 
 

SSL = aQb                                                            (1) 
  
where SSL is suspended sediment loading, Q is streamflow, a is a coefficient for the 
intercept, and b is an exponent for slope (Gray & Simoes, 2008). USGS daily streamflow 



and sediment data were fitted to this model in order to create a summary relationship 
characterizing the expected sediment loading per unit streamflow for all 187 suitable 
basins with available data. This fitting process is demonstrated in Figure 4. 
 

 
Figure 4. Sediment rating curve fitting: An exponential relationship between SSL and Q is found and logged 
along with its correlation coefficient (R2). The fitted coefficients are compiled along with GAGES-II basin 
properties for the wildfire analysis. 
 

Basin mean slope, relief ratio, drainage area, and total reservoir storage collected 
from the GAGES-II dataset were compiled along with fitted rating curve parameters to 
develop a profile for each basin, which were then used to select an appropriate study area 
for the single-site analysis. 

A cascade of increasingly data-intensive techniques for detection of a post-wildfire 
signal was applied to the single site in New Mexico, with the intent of both conclusively 
attributing, and later accurately predicting, the presence and magnitude of a suspended 
sediment response at a basin outlet due to a wildfire event. The framework of this 
methodology is founded on two key motivations: the necessity for actionable post-fire 
sediment response information under conditions of data scarcity, and the need to identify 
influences on sediment response that may be generalized to the U.S. West region, such that 
inferences about post-fire sediment loading may be drawn for basins without an abundance 
of observational data. The most optimal technique would achieve an accurate prediction of 
sediment response magnitude due to a wildfire event using as little input data as possible.  

The first method analyzes streamgage time-series data alone using a statistical 
technique called intervention analysis. Intervention analysis is commonly used to uncover 
the effects of an intervention, or an impactful event, on a time-series. Typically, an 



AutoRegressive Integrated Moving Average (ARIMA) model (Box & Jenkins, 1976) is 
applied to pre-event time-series data and used to forecast theoretical post-event data. This 
essentially contrasts the actual post-event observations with the model scenario in which 
pre-event data are used to forecast post event response as if the event did not occur. An 
ARIMAX model is an extended version of ARIMA, and additionally includes one or more 
exogenous predictor variables.  The equation for ARIMAX can be written as follows: 
 

𝑌" = 𝐶 + 𝑣(𝐵)𝑋" + 𝑁"                                                    (2) 
 
where 𝑌" represents the dependent variable, 𝑋" is the independent variable, C is the 
constant term, 𝑁" is the stochastic disturbance (i.e. the ‘noise’), 𝐵 is the backshift operator, 
and 𝑣(𝐵)𝑋" is the transfer function that allows X to influence Y through a distributed lag 
(Peter & Silvia, 2012). The transfer function can then be described as: 
 

𝑣(𝐵)𝑋" = (𝑣, + 𝑣-𝐵 +	𝑣/𝐵/ + ⋯)𝑋"                                       (3) 
 
This model was applied individually to each of the five wildfires at the study basin to train 
the model. The ‘pre-fire’ period used for training was defined as the start of the 
observational record up to the fire date of ignition. Determination of model parameters, 
including the lag order (number of lagged observations), degree of differencing (the 
number of times raw observations were differenced to remove nonstationarity), and the 
moving average order (the size of the moving average window), hereafter referred to as the 
variables (p, d, q), were made using the entirety of the observational record through step-
wise Akaike Information Criterion (AIC) model ranking provided in the R function 
auto.arima() from the forecast package (Hyndman et al., 2019). A forecasted period of one 
year was selected to encapsulate a full post-fire season. 
 The second technique adds daily precipitation data from Daymet to create a basin 
mean areal precipitation as another predictor variable for the ARIMAX model. Several 
studies (Knapen, et al., 2007; Moody, et al., 2008; Momm, et al., 2018) identify 
precipitation intensity thresholds that must be overcome for the initiation of concentrated 
erosion and debris flows. Identifying this threshold may be particularly important for the 
prediction of suspended sediment following a fire, as a signal may not be readily detectable 
for storm events below these thresholds, whereas disproportionately high volumes of 
sediment may be transported during the first post-fire storm above the threshold. Initially, 
precipitation intensity was plotted against post-fire streamgage SSL to find evidence of this 
threshold by inspection. Then, precipitation data were used to filter out days during which 
no precipitation occurred (as it is assumed no overland flow was present to transport 
sediment into the channel), and subsequently added as a predictor variable for the 
ARIMAX model. 
 The third technique retains the spatial information of the precipitation data, rather 
than aggregating over the basin area. Fire extents from MTBS for the five events were 
compared against the gridded storm extents to find storms co-located with affected areas. 
A detectable signal may be more easily found and isolated when knowledge of whether a 
storm precipitated over a burned area is added. Thus, periods of time when no precipitation 
occurred over a wildfire-affected area were filtered out, and the remaining data were again 
modeled to detect pre- vs. post-fire differences in SSL. 



 
 
 
 
Results 
 
Regional Analysis 
The results of fitting the MRC to observational data are summarized below. Figure 5 
summarizes coefficient ‘a’ across the domain. 

 
Figure 5. Spatial summary of coefficient ‘a’ from the MRC curve fitting process. GAGES-II basins across 
the U.S. West are shown. Grayed-out basins are those with not enough available data. 
 
The spatial variation of exponent ‘b’ is shown below in Figure 6. 
 



 
Figure 6. Spatial summary of exponent ‘b’ from the MRC curve fitting process. GAGES-II basins across 
the U.S. West are shown. Grayed-out basins are those with not enough available data. 

 
Finally, the correlation coefficient, or R2, of the fit between MRC-predicted and observed 
sediment is shown below in Figure 7. 
 

 
Figure 7. Spatial summary of exponent ‘b’ from the MRC curve fitting process. GAGES-II basins across 
the U.S. West are shown. Grayed-out basins are those with not enough available data. 
 

The MRC fit was largely skilled across the domain for all 187 basins, with 140 
basins showing an R-squared greater than 0.75. Coefficient ‘a’ remained relatively low 



across all basins, likely indicative of the ‘flashy’ nature of streams located in the arid West. 
Results for exponent ‘b’ are arguably the most interesting; high relative variability in its 
magnitude points towards basin-level differences that may be affecting its value. However, 
comparing ‘b’ against several basin metrics such as relief, mean slope, basin size, and 
mean flow (not shown) did not reveal any strong explanatory skill. 
 
Single site analysis 
 

For the single site analysis at Rio Puerco near Bernardo, NM, flow was multiplied 
with SSC to obtain SSL, which represents the volume of sediment flowing through the 
channel. Before fitting to an ARIMA model, these time-series were first examined for the 
presence of long-term trends and seasonality. An augmented Dickey-Fuller (ADF) test was 
applied to test for stationarity. The null hypothesis of non-stationarity over the time period 
was rejected with p < 0.01, indicating the absence of any longer-term trends that would 
need to be included in the model. To identify seasonal cycles in the data, plots of the auto-
correlation function (ACF) and partial auto-correlation function (PACF) for SSL 
observations at the gage were examined (Figure 8). 
 

 
Figure 8. Autocorrelation function (left) and Partial autocorrelation function (right) for SSL. The 
horizontal axis shows lag in days, and the vertical axis shows correlation. 
 
Significant auto-correlation exists for lags up to approximately one week, and, to a lesser 
extent, for a one-year lag, denoting the presence of an annual cycle for the time-series. A 
model optimization method using the R function ‘auto.arima’ was employed, which 
identifies a best model fit using the AIC method of ranking a model based on relative 
quality. Using the ARMIAX model with streamflow as an additional predictor, a non-
seasonal AR order, degree of differencing, and MA order (p, d, q) = (2, 1, 2) was identified 
as the top performer through AIC best model selection, using the full record of 
observations. 
 For each wildfire, the model was fit to the pre-fire data and used to forecast the full 
year following the event. This was then compared against the true observed series for those 
12 months, and the mean difference was taken to be the effect of the wildfire event. The 
results of this process are presented below in Figure 9. 



 

 
Figure 9. Model-predicted SSL versus observations following five observed wildfires at the study site near 
Bernardo, NM. Pre-fire data used to inform the model is shown in black, the observed post-fire data is in 
red, model-predicted values are shown in blue, and the 95th percentile upper confidence bound is shown in 
light blue. 
 
Differences between post-fire observational and forecasted SSL during each post-fire year-
long period are summarized below in Table 1. 

 
Table 1. Summary of mean and maximum differences between forecast mean and observed SSL (in kg/s) 
during post-fire periods. Ignition date and fire spatial extent are presented in the first column. Percent 
differences between forecasted and observed are also shown. An asterisk (*) denotes prescribed fires. 

Fire Event Forecasted 
Mean SSL 

Observed 
Mean 
SSL 

Percent 
Difference 

Forecasted 
Maximum 

SSL 

Observed 
Maximum 

SSL 

Percent 
Difference 

1999-06-03 
(13.15 km2) 70.82 77.16 8.22% 1656.86 1744.32 5.01% 

2004-06-12 
(37.40 km2) 20.02 20.63 3.00% 1525.73 1842.66 17.20% 

2008-05-30* 
(17.83 km2) 12.82 39.05 67.17% 340.74 4144.65 91.78% 

2012-04-23 
 (6.4 km2) 7.57 13.23 42.78% 288.75 439.03 34.23% 

2014-05-02* 
(5.77 km2) 49.07 56.83 13.65% 997.22 1299.03 23.23% 



 Next, the additional incorporation of precipitation data was tested to first determine 
if a specific post-fire erosion threshold could be found from the data, then added as a 
predictor to the ARIMAX model. First, a cross-correlation was applied between 
streamflow and precipitation, shown in Figure 10. 
 

 
Figure 10. Cross-correlation between streamflow and precipitation. The horizontal axis shows the lag in 
days between the two series of streamflow and precipitation. The vertical axis shows correlation. 
 
Prior literature, such as Valois et al. (2017), have taken the time of maximum correlation to 
be representative of the time of concentration for the watershed. The magnitude of the 
maximum correlation can also be taken as an indicator for the strength of the relationship 
between streamflow and precipitation. This basin shows a maximum lag time of 7 days, 
and a maximum correlation of 0.31, indicating a relatively slow concentration time and 
somewhat weak relationship between streamflow and precipitation. These initial findings 
point to the possibility of a predominantly groundwater discharge-fed watershed and/or the 
presence of other attenuating sub-basin processes that may store precipitation for a period 
of time before reaching the basin outlet. 
 Precipitation was fed into the ARIMAX model alongside streamflow as an 
exogeneous variable and used to forecast over the same post-fire periods. Adding 
precipitation as an additional parameter did not yield any significantly different forecast 
predictions, reflecting the weakness of basin-averaged precipitation as a predictor for SSL 
at the basin outlet. Among all fires, the largest difference between post-fire predicted mean 
SSL from the model with and without precipitation added was 0.71 kg/s. The largest 
difference in maximum SSL was 6.52 kg/s. 
 Finally, only precipitation that fell over a fire-affected area were analyzed. For each 
fire event, a unique time series of precipitation was used that represented precipitation 
falling within the extent of the fire perimeter provided by MTBS data. In order to 
determine if a sediment signal at the basin outlet could be attributed to sediment delivered 
from a burned area, the top 10 largest instantaneous SSL magnitudes were examined for 



each post-fire period. Cumulative precipitation that had fallen within the prior week (based 
on the estimated 7-day time of concentration for this basin) were plotted against the largest 
SSL magnitudes during the post-fire seasons (Figure 11). 

 
Figure 11. Cumulative precipitation over burned areas from the week preceding maximum observed SSL 
responses during post-fire periods. For each wildfire event, the top 10 post-fire SSL magnitudes were 
identified. For the week prior to these observations, precipitation over the burned area were summed. These 
SSL magnitudes and accumulated precipitation are shown. 
 
Of the 50 maximum instantaneous sediment loadings (10 for each of 5 observed fires in the 
basin), 20 showed no prior precipitation over the burned area, indicating that at least 40% 
of these large sediment signals could not be attributed to sediment originating from burned 
areas. 
 Replacing precipitation over the entire basin with precipitation over burned areas 
alone again yielded few differences from the original model. Among all fires, the largest 
difference between post-fire predicted mean SSL from the model with and without burned 
area precipitation added was 1.28 kg/s. The largest difference in maximum SSL was 21.07 
kg/s. 
 
 
Preliminary Conclusions and Future Work 
 

In this paper, we sought to characterize streamflow and sediment relationships 
through commonly used rating curve parameters at a diverse set of gaged locations across 
the western United States. We applied a statistical model to pre-fire streamgage data and 
forecasted the post-fire season, comparing differences in suspended sediment loading 
(SSL) magnitudes between the forecast and observations, and later adding data from 



Daymet (basin-averaged, then gridded) and MTBS to improve post-fire sediment signal 
strength.  

The regional analysis revealed trends in the rating curve exponent ‘b’ that may be 
worthwhile in future work to investigate further in order to identify correlations with 
additional basin characteristics not analyzed here. Future work will explore other 
predictive variables, such as land cover, geology, and climate, and their covariance with 
the value of ‘b’.  

For the single-site analysis, the gage-only method showed post-fire sediment signal 
for several of the fires, based on the difference between the observed and forecasted time 
series. The presence of these differences are encouraging, and reveal the potential for 
establishing an estimate of post-fire sediment response based on gage data alone. However, 
data limitations would make this method difficult, as most gages do not provide consistent 
sediment measurements. Including precipitation did not significantly affect the model; 
however, examining the link between cross-correlation in streamflow and precipitation 
versus sediment response may be worthwhile to investigate, as it could be posited that a 
shorter time of concentration, paired with a high correlation between precipitation and 
streamflow, may be indicative of a well-connected basin capable of delivering sediment 
with relative efficiency. Underpinning this hypothesis is the notion that a well-connected 
basin with little attenuation of streamflow from storm to outlet may also offer fewer 
obstacles for sediment as well. In these cases, strong post-fire SSL magnitudes may be 
more common. 

Future work will focus on the development and application of a more sophisticated 
sediment routing model, which can explicitly take into account sediment traps and other 
sub-basin processes that may help or hinder the journey of a sediment particle from a 
burned area to the outlet.  
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