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Abstract 
 

Hydrological drought is a complex phenomenon and defies a clear consensus on its 
definition. In earth system and environmental sciences, multiple types of droughts have 
been identified based on attributes such as duration, drought thresholds, and the 
impacts and stressors on watersheds. Streamflow is an important and direct indicator of 
hydrological drought making the accurate prediction of streamflow drought conditions 
of significant interest for the hydrological forecasting community. As part of a regional 
drought early warning system project, the U.S. Geological Survey is developing models 
to predict streamflow drought conditions using a long short-term memory (LSTM) deep 
learning model using streamflow data from 409 USGS stream gages throughout the 
Colorado River Basin and the surrounding area. In this study, we leveraged these model 
outputs, which were characterized using two performance measures; Kling-Gupta 
efficiency (KGE) on the streamflow percentile and Cohen’s Kappa on the classification of 
20% (moderate) threshold of hydrologic drought. Model performance ranges from 
reliable to no predictive skill across watersheds and varies based on the choice of 
thresholds used to define streamflow drought (i.e., fixed, or daily variable thresholds) 
over a year. 
 
To support this early warning system project, we used data that comprise model 

performance measures for predicting streamflow drought at 384 of the 409 gages within 

the Colorado River Basin region along with an additional 70 attributes compiled at the 

watershed-scale and associated with each of the 409 gages. We applied an unsupervised 

machine learning algorithm, a Self-Organizing Map (SOM), to cluster watersheds using 

their attributes, and then examined the model performance in relation to the clusters to 

determine if any meaningful patterns existed. We then used a random forest model to 

identify attributes most predictive of LSTM model performance. The random forest 

regression models showed that static watershed attributes may not be suitable 

predictors of LSTM model performance with R2 values of 0.29 – 0.35 obtained. 

However, interpretation of SOM results yielded insights into the factors that influence 



the predictive ability of the LSTM model and may help identify strategies for further 

improvements in model performance. 

 
Background 

 
Drought is an extreme event that develops gradually and is often unnoticed until water 

demands are not met. Given the multitude of direct and indirect detrimental impacts on 

the environment and various economic sectors, tackling drought at an early stage is of 

great importance (Yildirim et al., 2022). Streamflow drought is a type of hydrological 

drought manifesting in below-normal river discharge; accurate predictions of 

streamflow drought are of great interest for the hydrological forecasting community 

(Sutanto & van Lanen,2021; van Loon, 2015) and the ability to increase the forecast lead 

times is a key need in contemporary drought early warning systems. As part of such an 

early warning system focused on regional drought, the U.S. Geological Survey (USGS) is 

using what is known as long short-term memory (LSTM) deep learning models to 

predict streamflow drought conditions at lead times of 0, 7, 14, 30, and 60 days. 

Methods to forecast streamflow drought are different from streamflow forecasting, in 

that, the time series of predicted streamflow is post-processed and converted into a time 

series of drought events by applying drought identification approaches, e.g., the 

threshold approach or the standardized approach (Sutanto & van Lanen,2022). The 

threshold approach, or threshold level method, uses daily streamflow time series in 

order to identify periods of drought, and the onset of a drought event is defined when 

the daily streamflow drops below a pre-set threshold value; the event continues until the 

streamflow rises above the threshold. We consider two types of drought threshold 

approaches in this work, fixed and variable. The fixed approach applies a constant 

threshold value to the entire time series based on historical streamflow measurements, 

whereas the variable approach, allows the threshold to vary for each day of the year 

(Sutanto & van Lanen, 2021; Sarailidis et al., 2019). 

Evaluating model performance is an important aspect of any hydrological model, and a 

variety of evaluation metrics or performance measures are used to calibrate and validate 

models (Moriasi et al., 2015). Examples such as Nash Sutcliffe Efficiency, NSE (Nash & 

Sutcliffe, 1970) and Kling-Gupta Efficiency, KGE, (Gupta et al., 2009) are popular for 

estimating hydrologic model predictive ability. Using these performance measures, 

model predictive ability can be scored from “reliable” to “no predictive ability” on a 

watershed-by-watershed basis, and these broad categories of model performance may 

be correlated to watershed attributes (e.g., mean elevation). Further examination of 

these model performance patterns may reveal the underlying associations between 

LSTM model performance and watershed attributes. 

This study aims to explore patterns in LSTM model performance for a large-scale study 

of streamflow drought and the potential linkages of performance metrics to watershed 

attributes. We used performance measures of USGS LSTM predictive models for 

streamflow drought from 409 streamflow gages in the Colorado River Basin (CRB) and 



surrounding area, along with 70 watershed-scale attributes for each gage. We applied an 

unsupervised machine learning algorithm known as Self-Organizing Map (SOM) to 

explore linkages between watershed attributes and our target variable (i.e., LSTM model 

performance) using KGE and Cohen’s Kappa statistics as the performance measures. 

The use of both measures allows investigation of the model performance more generally, 

using KGE, and for identifying drought event periods specifically, Cohen’s Kappa. 

 
Methods 

 
Study Area & Dataset 

 

The USGS has compiled more than 70 watershed attributes for each of the watersheds 

associated with the 409 USGS streamgages within the Colorado River Basin and 

surrounding area (Wieczorek et al., 2023) as well as nowcasting (lead time of zero days) 

LSTM model performance measures (KGE and Cohen’s Kappa) in those watersheds 

(Hamshaw et al., 2023) (Figure 1, Panel a). Watershed attributes include, but are not 

limited to, information about soil type, topography, land cover and meteorology of 

watersheds; for a full list of watershed attributes see Table 1 in the Appendix. We used 

model performance measures corresponding to the LSTM models that predict 

streamflow drought using fixed and daily variable drought thresholds. The fixed 

approach applies a constant threshold value to the entire time series based on historical 

streamflow measurements, whereas the variable approach, allows the threshold to vary 

for each day of the year (Sutanto & van Lanen, 2021; Sarailidis et al., 2019). In this 

study, we leveraged these model outputs, which were characterized using two 

performance measures –Kling-Gupta efficiency (KGE) on the streamflow percentile and 

Cohen’s Kappa on the classification of 20% (moderate) threshold of hydrologic drought; 

categories of model performance for Cohen’s kappa statistics are based on the categories 

of Landis and Koch (Landis et al., 1977) and for KGE are set based on histogram of KGE 

values using natural breaks approach (Table 1). 

 

Table 1. The Categories of model performance for Cohen's kappa and KGE. 

Performance metric (PM) 
Cohen's kappa KGE 

Range Category Range Category 
PM < 0 No agreement PM < 0 Poor 
0 < PM <0.21 Slight 0 < PM <0.38 Fair 
0.21 < PM <0.41 Fair 0.38 < PM <0.55 Moderate 
0.41 < PM <0.61 Moderate 0.55 < PM <0.66 Good 
0.61 < PM <0.81 Substantial 0.66 < PM <0.78 Very good 
0.81 < PM <1 Almost perfect 0.78 < PM <1 Excellent 

 



Data pre-processing 

 
We performed an explanatory data analysis to select a suite of watershed attributes to 
use as input variables for the clustering algorithm and to remove the redundant 
attributes. We dropped attributes that were highly correlated to each other (i.e., Pearson 
correlation>0.8) and reduced the dimensionality of our data set to a more refined set of 
attributes. We also dropped attributes that had negligible influence on clustering using 
Principal Component Analysis (PCA). 

 

Self-Organizing Map (SOM), Unified-distance matrix and feature 
component planes  

 
The SOM is an nonparametric, unsupervised clustering algorithm with advantages over 
other clustering/classifying methods because of its ability to visualize associations 
between data. Because of its superior performance over parametric methods for 
classifying or clustering data of varying types (e.g., continuous, ordinal, nominal), 
scales, and distributions, the SOM has seen increasing application in the fields of 
geology (Karymbalis et al, 2010), lake ecology (Pearce et al., 2013), and hydrology (Ley 
et al., 2011). The SOM iteratively self-organizes the input data (here watershed 
attributes) to a lower dimensional space, typically a 2-D plane or lattice that can be more 
easily interpreted by domain experts to explore and visualize their data. For SOM 
algorithm details, see Kohonen (1990, 2001, 2013). The lattice of a SOM is not a map in 
the cartographic sense of the word. The x and y axes of these 2-D grids have no specific 
unit-of-measurement or label, and the absolute distance between any two observations 
in one part of the map is not the same as in another part of the SOM lattice. Rather, the 
SOM is designed to map the abstract search space of a given data set. Individual 
observations are fed into the algorithm and processed to cluster similar observations 
onto the 2-D lattice in such a way that observations with similar feature patterns (e.g., 
watershed-scale attributes) will appear closer to one another on the resulting self-
organized lattice. Clusters of like observations thus emerge and can be viewed and 
interpreted by the analyst. Because the algorithm is unsupervised, there are no pre-
determined number of clusters; rather relationships among the attribute values drive 
the clustering. 

 
The “unified distance matrix” (U-matrix), developed by Ultsch and Siemon (1989), is a 
visualization tool that aids with interpretation of boundaries between clusters. The U-
matrix is analogous to topographic shading on a geological map such that darker 
shading indicates greater differences/boundaries between clusters and lighter shading 
indicates smaller distances. It is used to display the topological relationships between 
the nodes in the SOM grid and for identifying patterns in the data. To create the U-
matrix, the average distance between each grid node and its neighbors (after training) is 
computed and assigned to the corresponding grid node. The resulting matrix is 
visualized as a grayscale image in this work. 
 
The feature component planes are another visualization tool to display and analyze the 
SOM results. It is a two-dimensional representation of the input data that shows the 
distribution of each input feature across the trained SOM grid. Feature component 



planes are created by plotting each input feature as a separate map on the trained SOM 
lattice, where the value associated with each node represents the average value of that 
feature for observations that map/cluster to that node. The feature component plane is 
useful for identifying features (here watershed attributes) that are driving the clustering 
of the input data. When a target variable (e.g., model performance) is superimposed on 
the map, it is possible to visualize patterns between the target variable and individual 
features (i.e., component plane).  
 

In this work, we used a SOM to test whether watersheds that clustered on their physical 

attributes have identifiable patterns (cluster) with model performance. We used the 

‘MiniSom’ Python package version 2.3.1 (Vettigli, 2018) to train a SOM with a hexagonal 

lattice topology and lattice size of 10 by 10. The SOM has an initial learning rate of 0.7 

and a neighborhood size that decreased linearly from half of the lattice to zero. Training 

was performed using 1000 iterations. We used the reduced set of watershed attributes 

(after dropping the redundant attributes) as inputs to the SOM. The LSTM model 

performance measures (Kappa and KGE metrics) were not used as inputs to the SOM.  

Instead, once the algorithm had converged, and the observations had self-organized 

onto the 2-D lattice, the model performance associated with each observation was 

mapped as a color-coded circle on the lattice. To determine the optimal number of 

clusters, we then used a subsequent supervised SOM algorithm to classify the trained 

weights into five groups. To verify watershed clustering, we then visualized the assigned 

clusters in cartographic space to interpret geographic patterns. Finally, we reviewed the 

component planes for each of the watershed attributes to explore linkages between the 

watershed attributes and model performance. 

 

Feature Importance  

 

The set of 50 attributes were then used as inputs to random forest regression models 

with Cohen’s Kappa performance measure for both fixed and variable threshold models 

as the predictor variable. Random forest is an ensemble learning algorithm that may be 

employed for identifying feature importance. It uses the Gini importance index or 

permutation importance index for feature importance measures and ranks the variables 

based on their contribution to the predictive ability of the model (Breiman, 2001). We 

used the predictor screening tool in JMP (JMP®, Version 15.0.0. SAS Institute Inc., 

Cary, NC, 1989–2021) with 1000 decision trees to find the attributes rankings. The 

predictor screening platform uses random forest to identify and rank potential 

predictors associated with the target variable, in this work identifying watershed 

attributes most important for predicting model performance. 

 

 



Predicting Model Performance from Watershed Attributes  

 

In addition to identifying feature importance (most associated with model 

performance), we also wanted to investigate using the reduced set of attributes for 

predicting likely model performance at “ungaged” locations. For this purpose, we 

trained a random forest regressor in JMP using the bootstrapped forest platform. We 

held back 30% of the data for testing and used 70% of the data for training. Different 

number of decision trees, fine-tuned automatically by JMP, were used for different 

models. 

 

Results & Discussion 
 

Clustering watersheds and identifying meaningful groups of model 
performance 

 
Based on inputs of 50 watershed attributes, the 409 streamflow gages were grouped into 
five clusters (Figure 1). We can observe that the clusters obtained through Self-
Organizing Maps (SOM) analysis of watersheds showed a clear geographical 
organization. Specifically, clusters 3, 4, and 5 were mainly concentrated in the upper 
Colorado basin and Rocky Mountains, which are characterized by higher elevations. On 
the other hand, clusters 1 and 2 covered the lower Colorado basin and the surrounding 
lower elevation areas. Cluster 1 was the largest and most widespread in terms of 
geographic distribution among the clusters.  
 



 
Figure 1. Map of USGS streamgages in the Colorado River Basin and surrounding area; circles are color-coded based 

on cluster number, (b) The SOM grid, color-coded based on the clusters of trained SOM weights, (c) Histogram of 
USGS streamgages showing the number of gages in each cluster. 

 
We then used the trained SOM weights to calculate the U-matrix and explore for 
observable patterns of model performance color-coding clustered observations with 
respect to model performance on top of the U-matrix. Figures 2 to 5 depict the SOM U-
matrix, showcasing the model performance categories superimposed on it across 
different types of thresholds (fixed and daily variable) and performance measures 
(Cohen's kappa and KGE). Our analysis of performance metrics did not reveal clear 
patterns or clusters on the SOM grid, suggesting that static watershed attributes 
(averaged over 40-years of record) may not be a strong predictor of model performance. 
However, when examining the four performance measures, we did observe some trends 
associated with higher and lower performance levels. Furthermore, the performance 
measures were generally higher for the fixed threshold models compared to the variable 
threshold models. 



 

 
Figure 2. The U-matrix of the SOM, for the model with a fixed threshold, has been overlaid with the performance 

categories based on Cohen's kappa. Performance metric categories provided in Table 1. 

 

 
Figure 3. The U-matrix of the SOM, for the model with a daily variable threshold, has been overlaid with the 

performance categories based on Cohen's kappa 



 

 
Figure 4. The U-matrix of the SOM, for the model with a fixed threshold, has been overlaid with the performance 

categories based on KGE 

 

 

Figure 5. The U-matrix of the SOM, for the model with a daily variable threshold, has been overlaid with the 
performance categories based on KGE 



 

Identifying linkages between Model Performance & Watershed 
Attributes 
 
In this section, we present examples of using the feature component planes 
corresponding to watershed attributes that when overlaid with model performance 
metrics help interpret relationships between attributes and model performance. The 
model performance based on Cohen’s kappa categories have been superimposed onto 
these feature component planes, allowing for an examination of the relationships 
between model performance and individual watershed attributes. Based on results of 
random forest (next section), we select the reservoir storage intensity (MAXDI_EROM 
in the list of variables in the Appendix), watershed mean elevation (TOT_ELEV_MEAN) 
and percentage of forest land cover (TOT_NLCD19_FOREST) to illustrate this process. 
We focus here specifically on the model performance results from the variable threshold 
model and Cohen’s kappa measure of performance.  
 

 

Figure 6. The feature component plane of the reservoir storage intensity, for the model with the daily variable 
threshold, has been overlaid with the performance categories based on Cohen's kappa 

High model performance (substantial category) is mostly corresponding to watersheds 
with lower reservoir storage intensity (Figure 6) found within Clusters 4 and 2 (Figure 
1).  This finding may indicate the degree of flow modification in a watershed is 
influencing model performance. We also see that watersheds with better model 
performance are mostly contained to higher elevation (Figure 7).  However, there are a 
number of poor performing high elevation watersheds as well, suggesting that factors 
other than elevation are influencing the accuracy of drought predictions based on the 
current LSTM models. Based on the component plane of forest cover (Figure 8), high 
elevation and high forest cover both correspond to higher model performance.  



 

 

Figure 7. The feature component plane of the watershed mean elevation, for the model with the daily variable 
threshold, has been overlaid with the performance categories based on Cohen's kappa 

 

 

Figure 8.  The feature component plane of the watershed forest land cover percent, for the model with the daily 
variable threshold, has been overlaid with the performance categories based on Cohen's kappa 

 



 

Assessing Feature Importance for Predicting Model Performance 
 
In this section, we used predictor screening random forest models to find the most 

important attributes for predicting Kappa performance measures for fixed and variable 

threshold models. Feature importance rankings are presented in Figure 9. For the fixed 

threshold model, reservoir storage intensity (MAXDI_EROM) is found to be the 

strongest indicator of model performance, whereas for the variable threshold mode, 

mean elevation (TOT_ELEV_MEAN) is the top feature. The feature importance 

rankings reveal some differences between what drives strong model performance with 

the variable and fixed models. For the fixed threshold models, features related to 

geology – topographic wetness index (TOT_TWI), average percent silt in soils 

(TOT_SILTAVE), average percent clay in soils (TOT_CLAYAVE), depth to bedrock 

(TOT_EWT) – are in the top 10 ranked features. In contrast, for variable threshold 

models, features related to land use/cover – percent forest cover 

(TOT_NLCD19_FOREST), and percent deciduous forest (TOT_NLCD19_41) are in the 

top ranked features.  

Features related to flow modification, baseflow, amount of precipitation, and 

extensiveness of road network appear in the top features for both fixed and variable 

threshold models. Of additional note, drainage area (DA_SQKM) does not appear to be 

an important predictor of performance, indicating the LSTM models are able to scale to 

different size basins effectively. 

 

 

 

 

 

 

 

 

 



 

 

 

Figure 9. Rankings and contributions of top 10 attributes in predicting kappa statistic for fixed threshold model 
(upper panel) and variable threshold model (lower panel) 

 

Predicting Model Performance from Watershed Attributes 

 

The reduced set of 50 attributes was tested for ability to predict model performance at 

ungaged sites by withholding a portion of gages (validation set) during training of the 

random forest models. The R2 of the models were 0.293 and 0.351 for predicting the 

Cohen’s kappa statistics for fixed and daily variable threshold, respectively (Figure 10). 

Interestingly, while variable threshold model performance is on average lower than the 

fixed threshold mode, the predictability of where a fixed threshold model will be more 

accurate is lower than variable threshold model. While watershed attributes do show 

some predictive ability of the streamflow drought LSTM model performance, additional 

factors not captured in the watershed attributes are likely needed to reliably predict 

model performance.  

 



 

 

Figure 10. Random Forest actual vs predicted results for Cohen’s kappa of (a) fixed threshold models and (b) 
variable threshold models. 

 

Further analysis could include calculating variables that describe the timeseries and 

drought event variability more directly. Holistically, this work develops a workflow that 

the USGS can utilize to prioritize areas for further data collection (e.g., on water 

use/irrigation) and need for model improvement. Additionally, the further development 

of a model to predict model performance can aid in estimating areas of likely unreliable 

model outputs, thereby improving the utility and trustworthiness of a drought early 

warning system. 
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Appendix 

 

Table 1. List of watershed attributes and their description 

 

Variable Name Description 

DA_SQKM Drainage area 

MAXDI_EROM Estimates reservoir storage intensity in units of days based on reservoir 
storage in a contributing area normalized by the mean annual 
streamflow. This metric indicates the duration of storage impact 
upstream from each stream segment relative to the typical flow 
condition 

Dam_Index Represents the degree of regulation of a river reach based on upstream 
reservoir storage relative to the 30-year average annual precipitation, as 
well as the upstream dam and watershed areas  

TOT_ELEV_MEAN Watershed's mean elevation in meters. 



 

TOT_ELEV_MIN Watershed's minimum elevation in meters. 

TOT_ELEV_MAX Watershed's maximum elevation in meters. 

TOT_STREAM_SLOPE Watershed's average flowline slope in percent. 

TOT_STREAM_LENGTH Watershed's total flowline length in kilometers. 

TOT_FSTFZ6190 Watershed average of mean day of the year of first freeze, derived from 
30 years of record (1961-1990), 2km PRISM. For example, value of 300 
is the 300th day of the year (Oct 27th).   

TOT_LSTFZ6190 Watershed average of mean day of the year of last freeze, derived from 
30 years of record (1961-1990), 2km PRISM.  For example, value of 100 
is the 100th day of the year (April 10th).   

TOT_MAXP6190 Watershed maximum average annual precipitation in mm 

TOT_MAXWD6190 Watershed average of maximum monthly number of days of 
measurable precipitation, derived from 30 years of record (1961-1990), 
2.3km PRISM.  This is simply the maximum value of the values 
WD_JAN_BASIN thru WD_DEC_BASIN. 

TOT_MINWD6190 Watershed average of minimum monthly number of days of measurable 
precipitation, derived from 30 years of record (1961-1990), 2.3km 
PRISM. This is simply the minimum value of the values 
WD_JAN_BASIN thru WD_DEC_BASIN. 

TOT_PRSNOW Snow percent of total precipitation estimate, mean for period 1901-
2000.  From McCabe and Wolock (submitted, 2008), 1km grid. 

TOT_RH Watershed average relative humidity (percent), from 2km PRISM, 
derived from 30 years of record (1961-1990). 

TOT_AET Watershed mean-annual evapotranspiration, estimated by Senay and 
others (2013) 

TOT_CWD Watershed's 30-year average number of consecutive days with 
measurable precipitation per NHDPlus version 2 catchment. 

TOT_WDANN Watershed's value for the 30-year annual average (1961-1990) number 
of days of measurable precipitation. -9999 denotes NODATA or source 
data does not cover catchment. 

TOT_BFI Watershed's Base Flow Index (BFI), The BFI is a ratio of base flow to 
total streamflow, expressed as a percentage and ranging from 0 to 100. 
Base flow is the sustained, slowly varying component of streamflow, 
usually attributed to ground-water discharge to a stream. 

TOT_CONTACT Watershed's Subsurface flow contact time index. The subsurface 
contact time index estimates the number of days that infiltrated water 
resides in the saturated subsurface zone of the basin before discharging 
into the stream.  

TOT_IEOF Watershed's Percentage of Horton overland flow as a percent of total 
flow 

TOT_RECHG Watershed's Mean annual natural ground-water recharge in 
millimeters per year 

TOT_SATOF Watershed's percentage of Dunne overland flow as a percent of total 
flow 

TOT_TWI Watershed's average Topographic wetness index, ln(a/S); where ln is 
the natural log, a is the upslope area per unit contour length and S is 
the slope at that point.  See 
http://ks.water.usgs.gov/Kansas/pubs/reports/wrir.99-4242.html and 
Wolock and McCabe, 1995 for more detail 

TOT_EWT Watershed's Average depth to water table relative to the land 
surface(meters) 



 

TOT_RF7100 Watershed's mean annual average for the Rainfall and Runoff factor ("R 
factor" of Universal Soil Loss Equation) for the period 1971-2000 in 
hundreds of foot-ton force-inch/acre-hour per year for the period 1971-
2000 

TOT_WB5100_ANN Watershed's Average annual runoff (mm) from McCabe and Wolock's 
Runoff Model 1951-2000  

TOT_MIRAD_2012 Percent of watershed in irrigated agriculture, from USGS 2012 250-m 
MODIS data 

TOT_FRESHWATER_WD Watershed's freshwater withdrawals from 1995-2000 county-level 
estimates 

TOT_STREAMRIVER Watershed's percentage of all flowlines reach lengths per NHDPlusV2 
catchment that is a stream or river. 

TOT_ARTIFICIAL Watershed's percentage of all flowlines reach lengths per NHDPlusV2 
catchment that is an artificial reach. An artificial path is a flowline 
feature that represents the assumed and generalized flow through a 2-
dimensional feature, such as a lake or a wide double-banked stream. 
The artificial path will carry the GNIS name (Geographical Name 
Information System from NHDPlusV2 flowine shapefile's item GNIS of 
the major stream it represents and not the waterbody feature. 

TOT_CANALDITCH Watershed's percentage of all flowlines reach lengths per NHDPlusV2 
catchment that is a canal. 

TOT_CONNECTOR Watershed's percentage of all flowlines reach lengths per NHDPlusV2 
catchment that is a connector. The NHDFlowline feature type 
connector establishes a known, but non-specific (unseen) connection 
between two non-adjacent geometric network (flowline) segments that 
have flow. These features are usually associated with the results of a 
dye-trace injection that ties the two surface water features together 
through some groundwater connection. 

TOT_PIPELINE Watershed's percentage of all flowlines reach lengths per NHDPlusV2 
catchment that is a pipe line. Pipelines are specifically man-made 
structures of steel, concrete, or polymers that direct surface water flows 
from one area to another. 

TOT_STRM_DENS Watershed's flowline catchment stream density calculated as stream 
length (meters) divided by catchment(s) area (square kilometers). 

TOT_RDX Number of roads to stream crossings per watershed. 

TOT_TOTAL_ROAD_DENS Density of all road types per watershed. Density is defined as the length 
of road divided by the catchment area. 

TOT_HGA Percentage of Hydrologic Group A soil. -9999 denotes NODATA, 
usually water. Hydrologic group A soils have high infiltration rates. 
Soils are deep and well drained and, typically, have high sand and 
gravel content. 

TOT_HGB Percentage of Hydrologic Group B soil. -9999 denotes NODATA, 
usually water. Hydrologic group B soils have moderate infiltration 
rates. Soils are moderately deep, moderately well drained, and 
moderately coarse in texture. 

TOT_HGC Percentage of Hydrologic Group C soil. -9999 denotes NODATA, 
usually water. Hydrologic group C soils have slow soil infiltration rates. 
The soil profiles include layers impeding downward movement of water 
and, typically, have moderately fine or fine texture. 

TOT_HGD Percentage of Hydrologic Group D soil. -9999 denotes NODATA, 
usually water. Hydrologic group D soils have very slow infiltration 
rates. Soils are clayey, have a high water table, or have a shallow 
impervious layer. 

TOT_SILTAVE Average percent of silt in soil per watershed 



 

TOT_CLAYAVE Average percent of clay in soil per watershed.  

TOT_SANDAVE Average percent of sand in soil per watershed.  

TOT_KFACT Average value for the K factor per watershed. 

TOT_KFACT_UP Average value for the K factor in the upper soil horizon per watershed. 

TOT_NO10AVE Average percent by weight of soil material less than 3 inches in size that 
passes through a No. 10 sieve (2 millimeters) per watershed. 

TOT_NO200AVE Average percent by weight of soil material less than 3 inches in size that 
passes through a No. 200 sieve (.074 millimeters) per watershed. 

TOT_NO4AVE Average percent by weight of soil material less than 3 inches in size that 
passes through a No. 4 sieve (5 millimeters) per watershed. 

TOT_OM Average value for the range in organic matter content (percent by 
weight) per watershed. 

TOT_PERMAVE Average value for the range in permeability (inches per hour) per 
watershed. 

TOT_RFACT Average Rainfall Runoff Factor from Universal Soil Loss Equation per 
watershed. 

TOT_ROCKDEP Average value for the range in the total soil thickness examined (inches) 
per watershed. 

TOT_BDAVE Average value for the value of bulk density (grams per cubic centimeter) 
per watershed. 

TOT_AWCAVE Average value for the range in available water capacity (fraction) per 
watershed. 

TOT_WTDEP Average value for the range in depth to the seasonally high water table 
(feet) per watershed. 

TOT_SRL25AG Estimated percent presence of the soil restrictive layer in the upper 25 
centimeters of agricultural land per watershed. 

TOT_NLCD19_11 2019 watershed percentage of land-use and land-cover type Open 
Water: All areas of open water, generally with less than 25 percent 
cover of vegetation or soil.  

TOT_NLCD19_12 2019 watershed percentage of land-use and land-cover type Perennial 
Ice/Snow: All areas characterized by a perennial cover of ice and/or 
snow, generally greater than 25 percent of total cover.  

TOT_NLCD19_52 2019 watershed percentage of land-use and land-cover type 
Shrub/Scrub: Areas dominated by shrubs less than 5 meters tall. Shrub 
canopy is typically greater than 20 percent of total vegetation. This class 
includes true shrubs, young trees in an early successional stage or trees 
stunted from environmental conditions.  

TOT_NLCD19_71 2019 watershed percentage of land-use and land-cover type 
Grassland/Herbaceous: Areas dominated by graminoid or herbaceous 
vegetation, generally greater than 80 percent of total vegetation. These 
areas are not subject to intensive management such as tilling, but can 
be utilized for grazing.  

TOT_NLCD19_81 2019 watershed percentage of land-use and land-cover type 
Pasture/Hay: Areas of grasses, legumes, or grass-legume mixtures 
planted for livestock grazing or the production of seed or hay crops, 
typically on a perennial cycle. Pasture/hay vegetation accounts for 
greater than 20 percent of total vegetation.  

TOT_NLCD19_82 2019 watershed percentage of land-use and land-cover type Cultivated 
Crops: Areas used for the production of annual crops, such as corn, 
soybeans, vegetables, tobacco, and cotton, and also perennial woody 
crops such as orchards and vineyards. Crop vegetation accounts for 



 

greater than 20 percent of total vegetation. This class also includes all 
land being actively tilled.  

TOT_NLCD19_DEVELOPE
D 

2019 watershed percentage of land-use and land-cover type Developed 
(either Open, Low Intensity, Medium Intensity, or High Intensity) 

TOT_NLCD19_FOREST 2019 watershed percentage of land-use and land-cover type Forest 
(either Mixed, Evergreen, or Deciduous) 

TOT_NLCD19_WETLAND 2019 watershed percentage of land-use and land-cover type Wetland 
(either Herbaceous or Woody) 

 

 

 

 
 


