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Extended Abstract 
 
Wildfires are a significant natural hazard (Kim & Jakus, 2019) and are increasing in size in recent 
decades (Dennison et al., 2014; Westerling et al., 2006; Westerling, 2016; Yang et al., 2015). A 
consequence of the increased wildfire activity is changes to runoff into streams and rivers which 
has been investigated in several publications. Annual flow volume increases of 20%-200% have 
been reported (Hallema et al., 2018; Niemeyer et al., 2020; Wine et al., 2018). These changes can 
persist for several decades (Niemeyer et al. 2020).  In addition to volume changes, the post-
wildfire peak flow magnitude can also be enhanced substantially. Studies have reported several 
orders of magnitude increase for post-wildfire peak flows (Coombs & Melack, 2013; Ice et al., 
2004; Neary, 2002; Neary et al., 2003, 2010; Scott & Van Wyk, 1990).  

Many communities in the US regulate development in the floodplain based on peak flow 
probabilities (e.g. 1 % annual exceedance probability (AEP)).  The challenge for local and state 
agencies is the peak flow probabilities are often based on pre-wildfire watershed conditions and 
there is limited information or guidance about how to adjust the peak flow magnitudes following 
the wildfire disturbance. The most recent study identified which uses observed peak flow changes 
in burned watersheds across the western US was by Yu et al. (2022). They reported that the 
median post-wildfire peak flows were increased relative to pre-wildfire period for watersheds with 
at least 25% of the drainage area burned.   

The objective of our analysis is to develop a framework that can be used to quantitatively 
estimate post-wildfire flow frequency changes. To accomplish this objective we used two 

software tools from the Hydrologic Engineering Center (HEC). These tools include the 
Hydrologic Modeling System (HEC-HMS) and the Watershed Analysis Tool (HEC-WAT), which 
includes a stochastic event generator for Monte Carlo simulations, called Hydrologic Sampler 
(HS). We tested this framework on the Cache La Poudre (CLP) Basin in northern Colorado 
which was recently impacted by the Cameron Peak Fire in 2020. The CLP River is a snowmelt 

dominated stream with peak flows occurring during the May through June period. 

Methods 
 

Modeling Framework 

 
The overall modeling framework consisted of development and calibration of an HEC-HMS 
model for the CLP Basin. The calibration was performed on four pre-wildfire snowmelt runoff 
events (April through June) with 24-hour precipitation greater than 1 inch. There is limited 
historical flow data available for calibration; therefore the primary data used was at the Canyon 
Mouth gage (Figure 1).  The daily flows have regulation and trans-basin diversions removed to 
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provide as close to a naturalized flow value as possible. The Monte Carlo simulation consisted of 
15,000 events using a combination of precipitation depths, storm shapes, temperature 
sequences, and initial snowpack conditions. To create the data needed for the Monte Carlo 
simulation several tasks were performed. This included a precipitation frequency analysis along 
with a storm shape analysis were used to disaggregate randomly sampled precipitation totals 
from the HS. In addition, a set of several air temperature sequences for each subbasin were used 
as input and are based on historical air temperature data. The set air temperature sequences 
were derived from extracting average daily air temperature during large precipitation events 
during the April through June season.  

 
Using a historical snow water equivalent (SWE) reanalysis dataset developed by Broxton et al. 
(2019), a spatially averaged daily SWE time series for mountainous regions (Figure 1) was 
derived. The time series was then subset to only include daily values from March through May. 
This subset SWE data time series was then ordered by percentile ranking. To create the set of 
initial SWE values for each subbasin within the HEC-WAT, the mountainous region SWE was 
sampled 250 times on equal intervals across the range of percentiles. Then using a bootstrap 
sampling method the SWE values were disaggregated to individual subbasins by selecting the 
individual subbasin SWE values for the subset of days that had a mountainous region SWE 
equal to the 250 sampled values; therefore ensuring that each set of SWE values was 
representative of the spatial distribution for each subbasin.  For example if the mountainous 
region SWE was 6 inches depth, then all daily SWE distributions that had an average 6 inch 
depth for the mountainous region average were pooled together. The pooled SWE distributions 
between subbasins were then sampled using a bootstrap method to create the spatially 
disaggregated SWE for each subbasin used in the HEC-HMS model1.   

 
The Monte Carlo simulation of these events was then simulated in HEC-WAT by HEC-HMS with 
each hydrologic event using a unique combination of precipitation depth, initial snowpack, and 
air temperature to produce peak flow values at the Canyon Mouth streamgage (Figure 1). The 
ensemble output of events provides direct calculation of confidence limits on the flow frequency 
distribution. These limits include combined uncertainty of precipitation, temperature, initial 
snowpack, and parameterization values. 
 
The relative differences between pre- and post-wildfire flow frequency produced by the Monte 
Carlo simulation was used to adjust the pre-wildfire flow frequency curve developed using 
systematic data records and Bulletin 17c methods (England et al. 2018).   
 

 

 
1  R code for this process can be obtained from the authors at https:// 
http://github.com/eheisman/BootstrapSWE 



 
Figure 1: CLP Basin in northern Colorado. The Cameron Peak Fire burn perimeter (orange) impacted large areas of 

the upper watershed. The primary HEC-HMS calibration location was at the Canyon Mouth streamgage. 

 

Precipitation Frequency 
 
Forcing data for the HEC-HMS model was derived from the Analysis of Record for Calibration 
precipitation and temperature data (AORC) (Kim & Villarini 2022). This data is one hour 
temporal resolution and 4 km spatial resolution for the continuous US. We aggregated to total 
precipitation over 24-hours and extracted the annual maximum precipitation values. Using 
these values, we developed the precipitation frequency quantiles for the CLP Basin (Figure 2). 
Both temperature and precipitation temporal distributions, at the subbasin level, were 
developed from the AORC data. Eight precipitation events and the corresponding temperatures, 
primarily occurring in May and greater than the 20% AEP, were chosen to represent the storm 
shapes. By using different temporal distributions of hourly forcing data, this provides a better 
estimate of confidence limits at each AEP. 

 



 
Figure 2: 24-hour precipitation frequency curve based on the AORC hourly data and used as input to the Hydrologic 

Sampler tool in HEC-WAT. 

 

HEC-HMS Model Parameter Adjustments 
 
The pre-wildfire calibration was used to set the parameters for the CLP HEC-HMS model. For 
the post-wildfire parameters, the burn severity and extents from two relatively recent fires in the 
CLP were used for adjustments. The parameter adjustments were performed for areas that were 
burned either in the 2012 High Park or 2020 Cameron Peak fires were. Parameter adjustments 
for the combined area were used because vegetation recovery following the High Park Fire has 
been minimal. Many of the forested areas burned in 2012 are now grass and small shrubs. We 
assumed areas which did not get impacted by wildfire were still represented by the pre-wildfire 
parameter set. In addition, only the infiltration, canopy interception, and snowmelt parameters 
were adjusted for the burned parts of the CLP. Other parameters required for routing water off 
the hillslope and through the channel network remained unchanged from the pre-wildfire 
calibration. 
 
For areas that did burn, the parameter adjustments were based on those found in the literature. 
The reduction of infiltration has been reported in several publications (Ebel et al., 2012; Ebel & 
Moody, 2017, 2020; Moody & Martin, 2001, 2015; Neary et al., 2010). Using the values reported 
in Ebel & Moody (2020) a 63% reduction in infiltration was applied to the pre-wildfire saturated 
hydraulic conductivity parameters in HEC-HMS. The final saturated hydraulic conductivity for 
burned subbasins was weighted for each burned subbasin by applying the 63% reduction to 
burn areas with moderate or high burn severity and combining that with the pre-wildfire 
saturated hydraulic conductivity for the remain area which was low burn severity or unburned. 
Parameter uncertainty can be directly included in HEC-HMS and is input as a range within the 
user interface. The pre-wildfire range of saturated hydraulic conductivity was 0.27 to 1.50, while 
the post-wildfire range was 0.10 to 1.50.    
 



In addition, snowmelt rates were included in the parameter uncertainty within HEC-HMS. The 
pre-wildfire melt-rates ranged from 0.04 to 0.12. The post-wildfire snowmelt rate was adjusted 
to 0.04 to 0.20 which are 5% to 200% higher than pre-wildfire rates. The melt-rate adjustments 
are based on analysis of SNOTEL sites in Colorado which have been impacted by wildfire and 
measurements from Burles & Boon (2011).  

 

Results 
 

The frequency curve shown in Figure 3 was developed from the pre-wildfire annual maximum 
peak flow events using the guidelines for flow frequency described in England et al. (2018). The 
plotting positions of the systematic events are based on the entire 1990-2012 dataset. Figure 4 is 
a comparison of the HEC-WAT pre- and post-wildfire frequency curves for the CLP at Canyon 
Mouth. The relative difference between these curves ranges from 247 cfs at the 50% ACE to 
5,262 cfs at 0.2% ACE.   

 
The relative difference was applied to the pre-wildfire frequency curve to obtain the post-
wildfire frequency curve as seen in Figure 5. The post-wildfire years are also overplotted with the 
pre-wildfire frequency curve. Based on applying the relative differences determined through the 
Monte Carlo simulations, the post-wildfire increase in peak flow values is approximately equal 
to the upper confidence limit of the pre-wildfire flow frequency estimate for probabilities less 
than 60%. 

 
We did perform the Monte Carlo simulation using only the 2012 High Park effects and the 
combined effects from both fires. The flow frequency differences compared to pre-wildfire 
values were minimal using only the High Park fire effects. The combined High Park and 
Cameron Peak fire effects resulted in much larger peak flow differences between pre- and post-
wildfire conditions. 



 

 
Figure 3: CLP at Canyon Mouth pre-wildfire peak flow frequency curve based naturalized flow 1990-

2012 using USGS Bulletin 17c procedures (England et al. 2018). 
 

 

 
Figure 4: Monte Carlo simulation results using HEC-WAT and HEC-HMS for CLP at Canyon Mouth peak flow 

frequency curves. Pre-wildfire results (grey) and post-wildfire results (red).  



 

 

 

 

 

 

 

 

Figure 5: Comparison of the systematic pre- and post-wildfire frequency curves using relative difference 
produced by the Monte Carlo simulation. 

Conclusions 
 

Based on the literature, post-wildfire increases in peak flow values are expected for rainfall 
events, however changes to snowmelt and rainfall runoff events have not been investigated 
nearly to the same extent. There are several key limitations to our analysis including limited 
historical streamflow data locations, the number of calibration years available that included 
large precipitation events, and assuming the effects of the 2012 High Park fire are still present. 
In addition, further refinements to the HEC-HMS model can be made to better capture peak 
flow events during dryer years. Our results indicated that peak flow changes for higher 
probabilities (lower peak flow values) do not substantially change from pre- to post-wildfire. 
Further investigation into these results should occur to ensure this is not an artifact of the model 
parameterization. A potential solution may be to create a pre- and post-wildfire parameter set 
specifically for years with lower peak flow values.  This could then be combined with the results 
from our current analysis to provide better definition for the full range of probabilities. 

   



The framework we have described uses publicly available software tools and can be used on most 
any high-end personal computer. In addition, our process allows for direct quantification of 
uncertainty associated with input variables (i.e., temperature, precipitation, and initial 
snowpack) and hydrologic model parameters (e.g., saturated hydraulic conductivity, melt-rate, 
etc.). Finally, by using pre-wildfire information to calibrate an HEC-HMS model and Monte 
Carlo simulations, we have provided a process which can be used by state and local officials 
during the post-wildfire recovery period to assess changes in flood risk to communities and 
critical infrastructure. 
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