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Abstract 

 
A critical impact of understanding the environmental impact of point water discharge is the 
extents and mapped delineation of its steady state runout, particularly since runout prediction 
determines if the flow reaches the Waters of the United States (WOTUS). To help with this 
assessment, the Arizona Department of Environmental Quality (ADEQ) requested that Matrix, 
with assistance from WEST, provide a web-mapping application that uses minimal, readily 
available parameters, to predict the runout from any point in Arizona. Matrix successfully 
developed this application, which first creates a base flow path by seamlessly combining 
multiple programs and programming languages, including Leaflet, Calcite Maps, Bootstrap, Esri 
ArcGIS API JavaScript, Turf.js, jQuery, and the USGS StreamStats Flow (Raindrop) Path 
algorithm. This overarching delineation is then truncated to a predicted runout path length 
determined by a closed-form equation developed by WEST. Both the runout application and 
runout length equation are believed to be the first of their kind. 
 
Introduction 
 
Since June of 2020, the Arizona Department of Environmental Quality (ADEQ) has worked to 
enforce the Clean Water Act (CWA) programs to the applicable watercourses within their 
responsibility.   These watercourses may fall under the Navigable Waters Protection Rule 
(NWPR) which divides water bodies by CWA jurisdiction.  Further complications arise from 
manmade outflows that discharge into jurisdictional waters, regardless of point source location.  
Under those circumstances, the entire watercourse, from point to outlet, will then be designated 
under CWA guidelines and thus those responsible for the point source will require a CWA 
permit.  
 
Further regulations relate to Waters of the United States (WOTUS).  WOTUS describes all major 
watercourses and waterbodies.  Projects involving WOTUS are typically subjected to multiple 
requirements at different levels of government.  Hence, understanding if and/or how a project 
discharge will impact a WOTUS becomes essential information.  Hydraulic contact with a 
WOTUS triggers numerous site-specific requirements beyond the scope of this paper.   The 
ADEQ (2023) WOTUS webpage (http://www.ADEQ.gov/wotus) and the NACO (2023) webpage 
(https://www.naco.org/resources/rewrite-waters-us-rule) both provide a good summary of the 
critical points, with references to other sources for more technical treatment.  
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Background and Goal  
 
In response to the imperative need for methods to analyze runout from point sources to see if 
they reach WOTUS, the ADEQ procured a consultant team led by Matrix New World 
Engineering (Matrix) and supported by WEST Consultants, Inc.  ADEQ provided clear 
instruction regarding the desired WOTUS assessment tool, which was to develop a tool to allow 
ADEQ staff and potentially permittees a simplified method by which to determine 
whether/under what conditions a given discharge could reach a WOTUS.  Matrix, with 
assistance from WEST Consultants, divided this work into two separate efforts:  
 
Runout Equation Development:  First, WEST determined a defensible yet simple first 
principles derived equation for predicting runout.  This equation uses readily available data 
sources including both project specific elements such as point discharge and the size of the 
contributing watershed, as well as natural aspects such as floodway width, 100-year discharge 
rates, and infiltration rates.  The developed formula can thus be implemented utilizing 
information from the permittee, USGS StreamStats reports, USDA soils information, Arizona 
floodway information, and flow regime geospatial data.  If necessary, other sources of data can 
be utilized in lieu of those listed above. 
 
 The final equation assumed uniform flow and a roughly parabolic shape (both a common 
assumption for natural channels) as well as constant values for the 100-year flow and 
infiltration (Equation 1).  The full entire derivation is included as an appendix. 
 

 𝑧𝑧𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = 𝑆𝑆𝑓𝑓
7𝑞𝑞100

2/7

5𝑝𝑝100𝑖𝑖
𝑞𝑞0
5/7

 (1) 
where 

𝑧𝑧𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟  = Runout distance (ft) 
𝑞𝑞100 = 100-year return flow estimate (cfs) 
𝑝𝑝100 = 100-year return wetted perimeter estimate (ft) 
𝑞𝑞0 = Initial point source flow (cfs) 
𝑖𝑖 = Infiltration rate (ft/sec) 
𝑆𝑆𝑓𝑓  = Safety factor (unitless) 

 
Web-mapping Application: Given the runout equation provided by WEST, Matrix developed 
a web-mapping application that allows ADEQ analysts to select a discharge point on a map, 
enter the parameters for the discharge, and then print a report outlining the path and length of 
the discharge. This web-based mapping application was built using Leaflet, Calcite Maps, 
Bootstrap, Esri ArcGIS API JavaScript, Turf.js, and jQuery. The USGS StreamStats Flow 
(Raindrop) Path application served as the basis to determine initial runout where no parameters 
are introduced. Once this path is determined, the analyst can use the Turf JavaScript editing 
tools to refine the runout path. 
 
When the above methodologies were applied, several assumptions were challenged and required 
further consideration.  These are: 
 

1. The runout path is inevitably sinusoidal.  The runout distance will be along the 
watercourse route and hence the Runout Tool must adjust accordingly. 

2. Three of the constants in the runout equation depend upon average values across the 
runout length:  The 100-year flood event Q100, the corresponding wetted perimeter p100, 
and the infiltration rate i.  Hence the process is iterative:  These variables are selected to 
estimate the total runout, and then revisited to better represent the average values 
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across-section runout distance.  The computation is then run again.  That said, the 
variation between iterations tends to be small by comparison with the overall length.  

3. With the model established, three separate helpful and sometimes required 
computations  can be made: 

a. The total expected runout (as described); 
b. The total distance to a WOTUS; 
c. The relationship between time and runout distance.  This can be helpful for 

quasi-unsteady modeling with a known hydrograph.   (The time relation aspect is 
shown in the appendix.) 

 
Final Product 

 
The final website, referred to as the Discharge Distance Determination (3D) website  is shown in 
Figure 1 below. 
 

 
 

Figure 1.  Discharge Distance Determination (3D) Analysis 
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The variety of user options is apparent, including zoom, select, pan, base map change, and other 
functions which should help verify the position of discharge point.  The sequence of tasks 
required to obtain the ultimate runout computation using the 3D website are as follows: 
 

1. Identify (assumed steady state) outflow from point source in gpm. 
2. Determine the latitude and longitude (in decimal form) of the point source. 
3. Determine the 100-year discharge (cfs) and drainage area (sq. mi.) at the point source.  

[StreamStats is one method for determining these values (Ries, et al. 2017).  See lower 
right inset, Figure 2., which shows the StreamStats reported results.]  

4. Input the coordinates into the 3D then press “Find Latitude and Longitude”.  (See upper 
right input box, Figure 1.)  Then press “Begin Discharge Analysis”.  

5. Input the flow and area information into 3D. (See upper right input box, Figure 4.) 
6. The program is ready to calculate.  Press the “Calculate Final Runout” button. 
7. The result is shown in Figure 4 with numerical details shown as an inset.  The predicted 

runoff is about 18 miles, just short of the French Creek tributary into Pleasant Lake. 
 

 
 

Figure 2.  Results from StreamStats Hydrologic and Hydraulic Analysis 
 

 
 

Figure 3.  3D Hydraulic and Hydrologic Data Input 



  Page 5 of 6 

 
 

Figure 4.  3D Example Results 
 
The example nondimensionalized runout geometry is also shown in Figure 5.   
 

 
 

Figure 5.  Example Runout Geometry 
 
It is seen that the channel flow velocity gradually drops until reaching zero at the runout point.  
Note that the Manning’s n is needed to describe how the depth changes over the runout distance 
but is not needed for the runout distance estimate itself.  
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Conclusion 
 
It is an ongoing challenge to understand the impacts that manipulating our water supply has 
had and continues to have on human health, the environment, the water cycle, and nature as a 
whole.  A key step in this learning process is to be able to accurately predict the threshold at 
which altered outflow enters back into the normal ecosystem.  The process developed and 
described herein is a solid step in that regard, but there is still much that can and should be 
done.  Examples include fully automating hydrologic prediction and developing guided web 
based hydraulic analysis tools.  
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Appendix A.  Derivation of Runout Equations 
 
 
This appendix provides details for the derivation of the proposed runout equation for ephemeral 
streams in Arizona.  As corollaries to this derived equation, believed to be the first of its kind, 
equations describing the wetted perimeter, wetted area, and depth of flow can also be predicted 
along the runout reach. 
 

Continuity 
 
The derivation of the proposed equation begins with the continuity equation for one-
dimensional flow: 
 

 
dq da ip
dz dt

+ = −   (1) 

where q (cfs) is the inflow at distance z (ft) from the point source q (cfs), and hence q = q0 at z = 
0, i (ft/sec) is the infiltration rate, a (ft2) is the wetted area, and p (ft) is the wetted perimeter.  
Solving the continuity equation requires first relating the key cross-sectional parameters to a 
single variable [here the depth y (ft) is used] and then applying these relationships to the partial 
differential equation and solving.  (Note that the boundary condition on y is that y = y0 at 
z = z0.) 
 

Parameter Relationships 
 
A natural cross-section can be reasonably approximated as a power equation relating depth y 
(ft) to horizontal distance x (ft), where x is equivalent to half the overall wetted width w (ft).  
This relationship may be written in general form as 
 

 
1 1

0y x x
y x

κ
 

= ≥ 
 

  (2) 

where x1 (ft) and y1 (ft) are known values at a particular flowrate q1 (cfs), and κ is a 
dimensionless coefficient, typically varying between one and two for natural channels 
(Vatankhah 2015).  Here, κ is assumed to be 3/2 - the average of the two extremes.  As can be 
seen in Equation (2), with κ established at 3/2,  any known values for x1 and y1 are suitable for 
establishing the power-law channel geometry.  The 100-year flow values are good candidates in 
this regard.  The 100-year flow q100 (cfs) and the 100-year floodway width w100 (ft) can be 
estimated using published equations as developed by the Arizona Department of Water 
Resources (ADWR) among others (note the “100” subscript is used here and subsequently to 
denote the given variable correspondence to the 100-year return event).  Specifically, the two 
sources that provide a q100 estimate is ADWR Publication 2-96 (ADWR Flood Mitigation Section 
1996) and StreamStats (Ries, et al. 2017)  The 100-year floodway width w100 can also be 
estimated from ADWR Publication 2-96 (ADWR Flood Mitigation Section 1996) as 
 
 100w Aλη=   (3) 

where η and λ are determined by region as given in the referenced publication, and A is the 
watershed area in square miles.  Of course, the floodway width is not equal to the floodplain width.  



However here, for the purposes of the runout calculation, the floodplain width is assumed equal 
to the floodway width.  The defense of this assumption is that the floodway width is always smaller 
than the floodplain.  Hence, the assumption of their equality is conservative with regards to 
estimating runout length since the narrower the wetted perimeter (i.e., floodway width at the 100-
year storm as compared with the floodplain), the slower the infiltration and longer the runout 
prediction. 
 
Utilizing these published data allows the power-law relationship to be rewritten in terms of known 
100-year depth and floodway width as follows: 
 

 
3/2

100 100

y w
y w

 
=  
 

  (4) 

Please note that while the 100-year value for x has been established in terms of the published half 
width x100 (i.e., x100 = ½ × w100), the depth of flow y100 (ft) has not been specified.  This value will 
be determined subsequently as a byproduct of deriving the runout equation. 
 
It must be stressed that the 100-year return event values shown in Equation (4) and subsequently 
are included purely as a means to establish the cross-section geometry.  They are given values.  
They cannot be determined by the derived equations, nor are they used directly to compute 
runout, but rather indirectly to help establish to bounds of the runout equation.  They can be 
replaced by any set of known values at a particular flow. 
 
The hydraulics component will require estimates of the wetted perimeter p (ft) and wetted area a 
(ft2).  Using x as the dummy variable for the integration over width, the wetted perimeter for the 
power-law section can be determined by evaluating 
 

 
2/2

0

2 1
w dyp dx

dx
 = +  
 ∫   (5) 

which results in the following closed form equation for the wetted perimeter: 
 

 
3/23 2

100 100
2 3
100 100

2 1 9 1
27

w yp w
y w

  
 = + − 
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  (6) 

Despite the closed form solution for p given above, it’s complexity ultimately prevents a closed 
form solution for the runout estimate.  To obtain an explicit equation for the runout, it is noted 
that the wetted perimeter will always be greater than the wetted width.  Hence, assuming p = w 
is conservative with regards to runout prediction since it will underpredict the total infiltration 
rate.  (Note that the assumption of p = w in general implies that p100 = w100 specifically.)  Given 
this assumption,  the relationship between depth and wetted perimeter can be taken directly 
from Equation (4) as follows: 
 

 
3/2

100 100

y p
y p

 
=  
 

  (7) 



Again, it is noted that p and p100 are assumed equal to the wetted widths w and w100 respectively.  
Solving for y in Equation (7) thus results in the simple equation for y in terms of p: 
 
 3/2 3/2

100 100y y p p−=   (8) 

Equation (8) can also be inversed to obtain the perimeter p as a function of y: 
 
 2/3 2/3

100 100p p y y−=   (9) 

The next step in the derivation is to develop equations for the wetted area.  The wetted area of 
the assumed power-law representation of the natural channel is expressed as the following 
integral: 

 
/2

3/2 5/2 5/2 3/2 3/2
100 100 100 100

0

2
p

a y p p y p x dx− −= − ∫   (10) 

The solution of Equation (10) is 
 3/2 5/2

100 100a y p pα −=   (11) 

where the constant α is1 
 3 / 5α ≡   (12) 

 
It is simple yet useful to find a100 is thus from Equation (11): 
 
 100 100 100a y pα=   (13) 

The wetted area a can be expressed in terms of y expressed as a function of y is then found by 
replacing p in Equation (11) with its value in terms of y given in Equation (9).  The result is 
 
 2/3 5/3

100 100a p y yα −=   (14) 

The preceding equations relate the hydraulic parameters but do not consider the flowrates q100 
and q0, both needed to obtain an estimate of y100, y0, and eventually the runoff distance and time 
to reach final runout.  To that end, Manning’s equation can be used to establish this 
relationship.  Manning’s equation in general form is  
 
 1 5/3 2/3 1/2q n a p sφ − −=   (15) 

where φ is the unit conversion constant (1.49 for the English units used here, 1.0 for SI units), n 
(dimensionless) is the channel roughness coefficient, and s (ft/ft) is the frictional slope, typically 
assumed to be the longitudinal slope.  Equation (15) can be written as a function of depth y 
through substitution of Equation (14) for a and Equation (9).  The result is 
 
 5/3 1/2 1 2/3 7/3

100 100q s n p y yφα − −=   (16) 

 
1 Note that the original report reported the incorrect value for α.  The corrected value is shown here.  This 
error has no impact on the final results. 



  



Note that for the 100-year storm, the corresponding predicted flow in Equation (16) is 
 
 5/3 1/2 1 5/3

100 100 100q s n p yφα −=   (17) 

Both the 100-year flow q100 and the 100-year flow wetted perimeter p100 are known values, and 
hence y100 can now be estimated explicitly in terms of the known values q100 and p100 by 
inverting Equation (17) to obtain 
 
 3/5 1 3/10 3/5 3/5 3/5

100 100 100y s n p qφ α− − − −=   (18) 

Substituting y100 into the previous explicit equations developed for the hydraulic variables  a, p, 
and q (i.e., Equations (18), (9), and (14)], the following 3 explicit equations can be established, 
each dependent upon only given site parameters: 
 
 2/5 5/3 1/5 2/5 7/5 2/5 5/3

100 100a s n p q yφ α − −=   (19) 

 2/5 2/3 1/5 2/5 7/5 2/5 2/3
100 100p s n p q yφ α − −=   (20) 

 7/5 7/3 7/10 7/5 7/5 2/5 7/3
100 100q s n p q yφ α − −=   (21) 

As noted previously, the boundary conditions for these equations are q = q0 at z = 0 and y = y0 
(ft) at z = 0.  The initial depth y0 can be established by applying Equation (21) at the outlet: 
 
 7/5 7/3 7/10 7/5 7/5 2/5 7/3

0 100 100 0q s n p q yφ α − −=   (22) 

which can be inverted to obtain an explicit solution for y0: 
 
 3/5 1 3/10 3/5 3/5 6/35 3/7

0 100 100 0y s n p q qφ α− − − −=   (23) 

Continuity Equation Solution 
 
The derived hydraulic parameters permit solution of the governing continuity equation.  The 
required derivations are straightforward application of the differentiation power-laws.  The 
differentiation terms for a and q can be directly evaluated from Equations (19) and (21) 
respectively: 
 

 2/5 5/3 1/5 2/5 7/5 2/5 2/35
100 1003

a ys n p q y
t t

φ α − −∂ ∂
=

∂ ∂
  (24) 

 7/5 7/3 7/10 7/5 7/5 2/5 4/37
100 1003

q ys n p q y
z z

φ α − −∂ ∂
=

∂ ∂
  (25) 

  



The equation for the wetted perimeter p as a function of y is given explicitly by Equation (20).  
Hence, the continuity equation can now be expressed in terms of depth by using equations (20), 
(24), and (25) to obtain 
 

 
7/5 7/3 7/10 7/5 7/5 2/5 4/3 2/5 5/3 1/5 2/5 7/5 2/5 2/37 5

100 100 100 1003 3

2/5 2/3 1/5 2/5 7/5 2/5 2/3
100 100

y ys n p q y s n p q y
z t

i s n p q y

φ α φ α

φ α

− − − −

− −

∂ ∂
+

∂ ∂
= −

  (26) 

Simplifying, this equation can be expressed as 
 

 2/3 1/2 1 2/3 17 3
5 5

y ys n y i
z t

φα α− −∂ ∂
+ = −

∂ ∂
  (27) 

Which is directly solvable using kinematics as follows:   
 
It is first observed that the complete derivative (as opposed to partial derivative) of y is defined 
by 
 

  
y ydy dz dt
z t
∂ ∂

= +
∂ ∂

  (28) 

Dividing by dt and reversing the equality results in the equation 
 

 
dz y y dy
dt z t dt

∂ ∂
+ =
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  (29) 

Note that Equation (27) is identical to (29) provided: 
 

 13
5

dy i
dt

α −= −   (30) 

and 

 2/3 1/2 1 2/37
5

dz s n y
dt

φα −=   (31) 

Using the boundary condition that y = y0 at z = 0, the solution to Equation (30) is 
 
 13

0 5y y i tα −= −   (32) 

Using the full equation for y0 given in Equation (23), this equation becomes: 
 
 3/5 1 3/10 3/5 3/5 6/35 3/7 13

100 100 0 5y s n p q q i tφ α α− − − − −= −   (33) 

The full runout time trunout (sec) occurs when y in equation (33) equals zero.  That is, at time 
trunout where 
 
 3/5 3/10 1 3/5 3/5 6/35 3/75

100 100 03runoutt s i n p q qφ− − − −=   (34) 

  



To obtain zrunout, it is noted that given Equation (32), Equation (31) can be rewritten as: 
 

 ( )2/31/2 1 3/5 3/10 3/5 3/5 6/35 3/77 3
100 100 05 5

dz s n s n p q q it
dt

φ φ− − − −= −   (35) 

which has the solution 
 

 ( )5/31 1 2/7 5/7 1/2 1 1 3/5 3/10 3/5 3/5 6/35 3/77 7 3
100 100 0 100 100 05 5 5z i p q q s i n s n p q q itφ φ− − − − − − −= − −   (36) 

The total runout occurs when parenthesis term in Equation (36) equals 0 (i.e., when t = trunout), 
as shown in Equation (34).  The result is simply 
 

 
2/7

5/7100
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100

7
5runout

qz q
p i

=   (37) 

It is important and somewhat surprising that the total runout distance is not a direct function of 
Manning’s roughness coefficient nor the longitudinal slope s.  It appears that these hydraulic 
values are inferred by q100 and p100 to which n and s are both implicitly related.  
 

Conclusions 
 
Each term in Equation (37) is consistent with expectations: 
 

1. As the 100-year flow q100 increases, so does zrunout.  In general, a higher 100-year flow is 
an indicator of a relatively steeper channel, lower roughness, and potentially relatively 
narrower floodplain (thus improving hydraulic efficiency), or some combination of the 
three, all of which would be expected to extend runout distance. 

2. The runout distance is predicted to increase with the input flow q0.  This is as expected – 
a higher flow in the system will require a longer distance to completely infiltrate. 

3. As the 100-year floodway width p100 increases, the overall runout length zrunout is 
predicted to decrease.  This is consistent with the general observation that an increased 
p100 will establish a wider floodway at a given flow rate. 

4. As expected, the infiltration decreases the runout length at higher values and increases it 
at lower values. 

 
The constant values used for this derivation are inherently uncertain.  The 100-year flow, 100-
year wetted perimeter, are both highly uncertain.  The assumption of a parabolic cross-section, a 
well vetted assumption, is unlikely to adequately capture all watercourses.  Field measurement 
of the infiltration rate can be very challenging.  Further, the cross-section geometry and 
infiltration rate are unlikely to remain unchanged throughout the length of the runoff distance. 
 
  



Unfortunately, it is difficult to quantify the above noted uncertainties.  However, the derived 
equations provide the best estimate.  To account for these uncertainties, it is recommended that 
a safety factor (Sf, dimensionless) be applied.  The value of this safety factor should be set by 
qualified project personnel.  Hence, the final recommended runout equation is 
 

 
2/7

5/7100
0

100

7
5runout f

qz s q
p i

=   (38) 

where sf > 1. 
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